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Abstract

This thesis consists of three parts. In the first part, we study the eleven dimensional
supergravity equations on B7 × S4 considered as an edge manifold. We compute the
indicial roots of the linearized system using the Hodge decomposition, and using the
edge calculus and scattering theory we prove that the moduli space of solutions, near
the Freund–Rubin states, is parameterized by three pairs of data on the bounding
6-sphere.

In the second part, we consider the family of constant curvature fiber metrics for
a Lefschetz fibration with regular fibers of genus greater than one. A result of Obitsu
and Wolpert is refined by showing that on an appropriate resolution of the total space,
constructed by iterated blow-up, this family is log-smooth, i.e. polyhomogeneous with
integral powers but possible multiplicities, at the preimage of the singular fibers in
terms of parameters of size comparable to the length of the shrinking geodesic. This
is joint work with Richard Melrose.

In the third part, the resolution of a compact group action in the sense described
by Albin and Melrose is applied to the conjugation action by the unitary group on
self-adjoint matrices. It is shown that the eigenvalues are smooth on the resolved
space and that the trivial tautological bundle smoothly decomposes into the direct
sum of global one-dimensional eigenspaces.

Thesis Supervisor: Richard B. Melrose
Title: Simons Professor of Mathematics
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Chapter 1

Introduction

Microlocal analysis has a lot of applications in partial differential equations and anal-

ysis of problems with geometry and physics background. In this thesis, we apply

microlocal techniques and the theory of pseudo-differential operators to two problems

on noncompact and singular manifolds. The first one is the eleven dimensional su-

pergravity equations on edge manifolds for which I give a characterization of all the

solutions near the Freund–Rubin solution [47]. The second project, in collaboration

with Richard Melrose, we work on the complete expansion of the constant scalar

curvature fiber metric in the case of a Lefschetz fibration [31], which arises natu-

rally as the singular behavior across the divisors introduced in the Deligne–Mumford

compactification of the moduli space of Riemann surfaces.

To get information of operators in a singular geometry setting, people study the

Schwarz kernel and the behavior of the model operators on the double space. To

study the behavior of the kernel and construct parametrices on this double space,

blow up action is introduced [34, 32] and this approach has been utilized to solve

many geometric problems [35, 26, 27, 24, 44]. The third part of this thesis contains

an example of resolutions, which is an application of the resolution of a compact

group action on a compact manifold described by Albin and Melrose [1], to the case

of 𝑈(𝑛) action on self-adjoint matrices [48].
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1.1 Eleven dimensional supergravity theory on edge

manifolds

Supergravity theories arise as the representations of super Lie algebras in various di-

mensions. They can be viewed as low energy approximations to string theory with

classical equations of motion. In particular, the case of dimension eleven has been

studied by physicists since the 1970s [43, 42, 6, 2]. It was shown that there is a

unique system in eleven dimensions and the theories in lower dimensions can be ob-

tained from it through dimension reduction [37]. Since it is related to the AdS/CFT

correspondence and brane dynamics, this subject has recently attracted more atten-

tion [3, 45].

We are interested in a particular case, namely, the bosonic sector of eleven dimen-

sional supergravity theory. The nonlinear system couples a metric 𝑔 (gravity) and a

4-form 𝐹 (extra field), and is derived from a Lagrangian constructed on the eleven

dimensional manifold 𝑋 = B7 × S4:

𝐿(𝑔, 𝐹 ) =

∫︁
𝑋

𝑅𝑑𝑉𝑔 −
1

2
(

∫︁
𝑋

𝐹 ∧ *𝐹 +

∫︁
𝑋

1

3
𝐴 ∧ 𝐹 ∧ 𝐹 ) (1.1)

where 𝐴 satisfies 𝑑𝐴 = 𝐹 . The first term is the classical Einstein–Hilbert action term,

while the second and the third terms are, respectively, of Yang–Mills and Chern-

Simons type for a field. The supergravity system, the variational equation for (1.1)

is
𝑅𝛼𝛽 = 1

12
(𝐹𝛼𝛾1𝛾2𝛾3𝐹

𝛾1𝛾2𝛾3
𝛽 − 1

12
𝐹𝛾1𝛾2𝛾3𝛾4𝐹

𝛾1𝛾2𝛾3𝛾4𝑔𝛼𝛽)

𝑑 * 𝐹 = −1
2
𝐹 ∧ 𝐹

𝑑𝐹 = 0.

(1.2)

As a special case, there is a family of solutions to the full system given by the

product of a scaled spherical metric on S4 and an Einstein metric ℎ on B7 with Ricci

curvature satisfying Ric(ℎ) = −𝑐2ℎ. The product solutions are given by

𝑔 = ℎ× 9

𝑐2
𝑔S4 , 𝐹 = 𝑐𝑑𝑉S4 , ∀𝑐 ∈ R. (1.3)
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In particular for 𝑐 = 6 these are known as Freund–Rubin solutions [11] with 1/4 of

the standard S4 metric and an Einstein metric on H7. When we restrict the search of

solutions to a product metric, the following theorem by Graham–Lee [15] showed that

the existence of Poincaré–Einstein solutions near the hyperbolic metric prescribed by

data at conformal infinity:

Theorem 1.1 ([6]). Let 𝑀 = B𝑛+1 be the unit ball and ℎ̂ the standard metric on S𝑛.

For any smooth Riemannian metric 𝑔 on S𝑛 which is sufficiently close to ℎ̂ in 𝐶2,𝛼

norm if 𝑛 > 4, or 𝐶3,𝛼 norm if 𝑛 = 3, for some 0 < 𝛼 < 1, there exists a smooth

metric 𝑔 on the interior of 𝑀 , with a 𝐶0 conformal compactification with conformal

infinity [𝑔] and

Ric(𝑔) = −𝑛𝑔.

Combined with (1.3), the 4-form 𝐹 being a multiple of the 4-sphere volume form

gives a family of solutions parametrized by conformal metrics on the bounding 6-

sphere. This product solution corresponds to the edge structure in the sense of

Mazzeo [25, 23]. An edge structure is defined on a manifold 𝑀 where the boundary

has a fibration over a compact manifold as follows,

𝜋 : 𝐹 // 𝜕𝑀

��
𝐵

(1.4)

which, is our case, is the product fibration

𝜋 : S4 // 𝜕𝑀

��
S6

The space of edge vector fields 𝒱𝑒(𝑀) is a Lie algebra consisting of those smooth vector

fields on M which are tangent to the boundary and such that the induced vector fields

on the boundary are tangent to the fibres of 𝜋. Let (𝑥, 𝑦1, 𝑦2, ...𝑦6) be coordinates

of the upper half space model for hyperbolic space H7, and 𝑧𝑗 be coordinates on the
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sphere S4. Then locally 𝒱𝑒 is spanned by

𝑥𝜕𝑥, 𝑥𝜕𝑦, 𝜕𝑧.

The edge forms are the dual to the edge vector fields 𝒱𝑒, with a basis:

𝑑𝑥

𝑥
,
𝑑𝑦

𝑥
, 𝑑𝑧.

The edge tensors and co-tensors are the products of those basis forms, and the solu-

tions we look for are in the sections of the edge bundles.

In Mazzeo’s paper [25] the Fredholm property of certain elliptic edge operators has

been discussed. It is related to the invertibility of the corresponding normal operator

𝑁(𝐿), which is the lift of the operator to the front face of the double stretched space

𝑋2
𝑒 . If we write the edge operator in local coordinates as:

𝐿 =
∑︁

𝑗+|𝛼|+|𝛽|≤𝑚

𝑎𝑗,𝛼,𝛽(𝑥, 𝑦, 𝑧)(𝑥𝜕𝑥)
𝑗(𝑥𝜕𝑦)

𝛼(𝜕𝑧)
𝛽, (1.5)

then the normal operator is

𝑁(𝐿) =
∑︁

𝑗+|𝛼|+|𝛽|≤𝑚

𝑎(0, 𝑦, 𝑧)(𝑠𝜕𝑠)
𝑗(𝑠𝜕𝑢)

𝛼𝜕𝛽𝑧 , (1.6)

where (𝑠, 𝑢, 𝑦, 𝑧, 𝑧) is a coordinate on the front face of 𝑋2
𝑒 . The invertibility of the

normal operator is in turn related to its action on functions polyhomogeneous at the

left boundary of 𝑋2
𝑒 , of which the expansion is determined by the indicial operator,

which by definition is

𝐼𝑝[𝑃 ](𝑠)𝑣 = 𝑥−𝑠𝑃 (𝑥𝑠𝑣)|𝜋−1(𝑝), (1.7)

where 𝑝 is a point in the base and 𝑠 is a complex number. and in local coordinate

𝐼(𝐿) is written out (using a conjugation of Mellin transform 𝑀𝑖𝑠) as

𝐼[𝐿](𝑠) =𝑀𝑖𝑠

(︂ ∑︁
𝑗+|𝛽|≤𝑚

𝑎𝑗,0,𝛽(0, 𝑦, 𝑧)(𝑠𝜕𝑠)
𝑗𝜕𝛽𝑧

)︂
𝑀−1

𝑖𝑠 (1.8)
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The inverse of the indicial operator 𝐼(𝐿)(𝜃)−1 exists and is meromorphic on the com-

plement of a discrete set spec𝑏 𝐿, which is the indicial roots of L. Those indicia roots

provide information of the operator, and more precisely, the parametrix of an edge

operator is constructed on the stretched double product where the Schwartz kernel is

lifted with polyhomogeneous expansions.

Theorem 1.2 ([25]). If an elliptic edge operator 𝐿 ∈ Diff𝑚𝑒 (𝑀) has constant indicial

roots over the boundary and its normal operator 𝐿0 and its adjoint 𝐿𝑡0 has the unique

continuation property, then L is essentially injective (resp. surjective) for a weight

parameter 𝛿 /∈ Λ = {Re 𝜃+1/2 : 𝜃 ∈ spec𝑏 𝐿} and 𝛿 ≫ 0 (resp. 𝛿 ≪ 0), and in either

case has closed range.

With the edge vector fields one can define the edge Sobolev spaces

𝐻𝑠
𝑒 (𝑀) = {𝑢 ∈ 𝐿2(𝑀) | 𝒱𝑘𝑒 𝑢 ∈ 𝐿2(𝑀), 0 ≤ 𝑘 ≤ 𝑠}. (1.9)

For purpose of regularity we are also interested in hybrid spaces with additional

tangential regularity. The existence of solutions with infinite smooth b-regularity

gives the solution with polyhomogeneous expansions. Therefore we set the Sobolev

space with boundary and edge regularity as:

𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) = {𝑢 ∈ 𝐻𝑠

𝑒 (𝑀) | 𝒱 𝑖𝑏𝑢 ∈ 𝐻𝑠
𝑒 (𝑀), 0 ≤ 𝑖 ≤ 𝑘}

By the commuting relation [𝒱𝑏,𝒱𝑒] ⊂ 𝒱𝑏, 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) is well defined, that is, independent

to the order of applying edge and b-vector fields. These Sobolev spaces are defined

so that edge operators maps between suitable spaces, i.e., for any m-th order edge

operator 𝑃 ∈ Diff𝑚𝑒 𝑀 ,

𝑃 : 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀)→ 𝐻𝑠−𝑚,𝑘

𝑒,𝑏 (𝑀),𝑚 ≤ 𝑠. (1.10)

Following the idea of Graham–Lee [15] of constructing solutions that are close to

the hyperbolic metric, we are interested in those solutions to (1.2) that are quasi-

isometric to the Freund–Rubin solution in the edge class, that is, as sections of edge

15



bundles Sym2(𝑒𝑇𝑀)⊕𝑒⋀︀4 𝑇 *𝑀 . Kantor in his thesis [20] first considered this problem

and constructed a family of solutions to the linearized equations, which correspond

to change of the 4-form along one particular direction. Our result is a generalization

of the results of Graham–Lee and Kantor, in that we considered the variation of the

metric and the 4-form together.

The structure of the proof is as follows. In section 2.2 we fix the gauge of this

system, using the DeTurck gauge-breaking term 𝜑(𝑡, 𝑔) introduced in [15] and show

that by adding this gauge term we get an operator Q, which is a map on the space

of symmetric 2-tensors and closed 4-forms:

𝑄 : 𝑆2(𝑇 *𝑀)⊕⋀︀4
𝑐𝑙(𝑇

*𝑀)→ 𝑆2(𝑇 *𝑀)⊕⋀︀4
𝑐𝑙(𝑇

*𝑀)

⎛⎝ 𝑔

𝐹

⎞⎠ ↦→
⎛⎝ Ric(𝑔)− 𝜑(𝑡, 𝑔)− 𝐹 ∘ 𝐹

𝑑 * (𝑑 * 𝐹 + 1
2
𝐹 ∧ 𝐹 ).

⎞⎠ (1.11)

The solution to the gauged equation uniquely determines a solution to the original

equations.

In section 2.3 we compute the indicial roots of the linearized gauged equations.

The system splits according to the degree of forms on the product manifold, and

further breaks down into blocks under the Hodge decomposition on the 4-sphere.

The indicial roots apppear in pairs, symmetric around the line Re 𝑧 = 3, and are

parametrized by the eigenvalues of the 4-sphere (see Figure 2-1 for the indicial roots

distribution). Then according to different behaviors of the indicial roots we use

different strategies. For large eigenvalues, for which the indicial roots separate away

from the 𝐿2 line, a parametrix is constucted using the small edge calculus introduced

by Mazzeo [25], showing that the operator is an isomorpism. The Fredholm property

of the smaller eigenvalues that are still separated away from 𝐿2 line is individually

discussed in a similar manner using normal operator construction; then we use the fact

there are no finite-dimensional 𝑆𝑂(7) invariant sections in 𝐿2 on hyperbolic space for

symmetric tensors and forms [7], to show that the operator is injective on any space

that is contained in 𝐿2. For the three pairs with real part of indicial roots equal
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to 3, the projection of the operator becomes a 0-problem and we follow the method

in Mazzeo–Melrose [29] and Guillarmou [18] to construct two generalized inverses

𝑅± = lim𝜖→0(𝑑𝑄 ± 𝑖𝜖)−1. Then we use scattering matrix construction on hyperbolic

space given by Graham–Zworski [16] and Guillarmou–Naud [19] to show explicitly

that real-valued kernel of the linearized operator is prescribed by three pairs of data

on the boundary 6-sphere.

In section 2.4 we apply the implicit function theorem, using the fact that the

nonlinear terms are all quadratic, so the nonlinear solutions are also parametrized by

these three terms.

Now we state the main theorem. Let

𝑉1 := {𝑣1 ∈ 𝐶∞(S6;
⋀︀3 𝑇 *S6) : *S6𝑣1 = 𝑖𝑣1}.

Let 𝑉 ±
2 , 𝑉 ±

3 be the smooth functions on the 6-sphere tensored with a finite dimensional

1-form space on S4:

𝑉2 := {𝑣2 ⊗ 𝜉16 : 𝑣2 ∈ 𝐶∞(S6;R), 𝜉16 ∈ 𝐸𝑐𝑙
16(S4)}

𝑉3 := {𝑣3 ⊗ 𝜉40 : 𝑣3 ∈ 𝐶∞(S6;R), 𝜉40 ∈ 𝐸𝑐𝑙
40(S4)}

where 𝐸𝑐𝑙
16(S4) and 𝐸𝑐𝑙

40 are closed 1-forms with eigenvalue 16 and 40 on the 4-sphere.

We also require three numbers that define the leading term in the expansion of

the solution, which come from indicial roots:

𝜃±1 = 3± 6𝑖, 𝜃±2 = 3± 𝑖
√
21116145/1655, 𝜃3 = 3± 𝑖3

√
582842/20098. (1.12)

If we fix an element [ℎ̂] in the conformal boundary data to the leading order,

the solution is parametrized by a small perturbation from the data on the bundle

𝐶∞(S6;⊕3
𝑖=1𝑉𝑖). The metric part of the solution to the leading order is given by the

conformal infinity [ℎ̂], whereas the form part to the leading order is given by the

oscillatory data 𝑣+𝑖 𝑥𝜃
+
𝑖 + 𝑆𝑖(𝑣𝑖)𝑥

𝜃− .
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To state the theorem, we also give the following notations. Denote

𝑢0 := (𝑔H7 × 1

4
𝑔S4 , 6VolS4)

and [ℎ̂] is close to 𝑔0 as metric on S6. A small neighborhood in the bundle is given by

𝑈 ⊂ 𝐶∞(S6;⊕3
𝑖=1𝑉𝑖)

Theorem 1.3. For 𝛿 ∈ (0, 1), 𝑠 ≥ 2 and 𝑘 ≫ 0, in the space of solutions to 𝑄(𝑢) = 0

in 𝑥3−𝛿𝐻∞
𝑏 (𝑀 ;𝑊 ), a neighborhood of 𝑢0 is smoothly parametrized by [ℎ̂] and 𝑈 . For

a smooth section 𝑣 ∈ 𝑈 with a sufficiently small 𝐻𝑘 norm and a [ℎ̂], there is a unique

𝑔 ∈ 𝑥−𝛿𝐻∞
𝑏 (𝑀 ; Sym2(𝑒𝑇 *𝑀)) and a 4-form 𝐹 ∈ 𝑥−𝛿𝐻∞

𝑏 (𝑀 ; 𝑒
⋀︀4(𝑇 *𝑀)) prescribed

by those data, such that (𝑔 − ℎ, 𝐹 − 𝑉0) ∈ 𝑥−𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) and 𝑄(𝑢) = 0.

1.2 Resolution of the canonical fiber metrics for a

Lefschetz fibration

In this project joint with Richard Melrose, we give a complete description of the

behavior of the constant scalar curvature fiber metric on a Lefschetz fibration with

fiber genus ≥ 2. For a Riemann surface with 𝑔 ≥ 2, the classical uniformization

theorem guarantees the existence of a metric with constant scalar curvature −1. One

may ask the question about the existence and behavior of a constant scalar curvature

metric if the geometry becomes singular, namely, we take a nontrivial geodesic cycle

and let its length go to zero, which is illustrated in Figure 1-1.

This fits naturally with the setting of a Lefschetz fibration. The class of Lefschetz

fibrations we consider is for a compact connected almost-complex 4-manifold 𝑊 and

a smooth map, with complex fibers 𝐹 , to a Riemann surface 𝑍

𝜓 : 𝐹 //𝑊

��
𝑍

(1.13)
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Figure 1-1: Degenerating surfaces with a geodesic cycle shrinking to a point

which is pseudo-holomorphic, has surjective differential outside a finite subset of 𝑊

and near each of these singular points is reducible to the following normal crossing

model:

𝑃𝑡 =
{︁
(𝑧, 𝑤, 𝑡) ∈ C3; 𝑧𝑤 = 𝑡, |𝑧| ≤ 1, |𝑤| ≤ 1, |𝑡| ≤ 1

2

}︁
∋ (𝑧, 𝑤, 𝑡)

−→ D 1
2
=
{︁
𝑡 ∈ C; |𝑡| ≤ 1

2

}︁
. (1.14)

Lefschetz fibrations play an important role in 4-manifold theory. Donaldson [8]

showed that a 4-dimensional simply-connected compact symplectic manifold admits a

Lefschetz fibration over a sphere up to a stabilization, and Gompf showed the converse

[14].

Obitsu and Wolpert [39] [46] studied a degenerating family of Riemann surfaces 𝑅𝑡

where near each singularity the model is 𝑃𝑡 and the metric is given by the plumbing

metric

𝑑𝑠2𝑃𝑡
=

(︂
𝜋 log |𝑧|
log |𝑡| csc

𝜋 log |𝑧|
log |𝑡|

)︂2

𝑑𝑠20,

𝑑𝑠20 =

(︂ |𝑑𝑧|
|𝑧| log |𝑧|

)︂2

.

(1.15)

Fiberwise it has constant scalar curvature −1, and approaches the singular metric

𝑑𝑠20 on the cylinder as 𝑡 tends to 0. By grafting with the regular parts, they constructed

the expansion of metrics on the global manifold.
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Figure 1-2: Lefschetz fibration 𝜓 :𝑀 → 𝑍
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Theorem 1.4 ([39], [46]). Let 𝑑𝑠2𝑐𝑐 be the hyperbolic metric on the degenerated family

𝑅𝑡 with 𝑚 vanishing cycles, 𝛥 the associated Laplacian, and 𝑑𝑠𝑝𝑙 the plumbing metric

that comes from gluing 𝑑𝑠2𝑃𝑡
with the regular part, then the metric has the following

expansion

𝑑𝑠2𝑐𝑐 = 𝑑𝑠2𝑝𝑙

(︃
1− 𝜋2

3

𝑚∑︁
𝑗=1

(︁ 1

log |𝑡𝑗|
)︁2
(𝛥− 2)−1(Λ(𝑧𝑗) + Λ(𝑤𝑗)) +𝑂

(︂∑︁(︁ 1

log |𝑡𝑗|
)︁4)︂)︃
(1.16)

where the function Λ is given by Λ(𝑧𝑗) = (𝑠4𝑧𝜒𝜋−1D1/2
)𝑠𝑧 , 𝑠𝑧 = log |𝑧𝑗|.

Our result is a generalization of Theorem 1.4 by showing that, in the resolved

plumbing space, 𝑔𝑐𝑐 is conformal to 𝑔𝑝𝑙, where the conformal factor has a complete

expansion in the variable log |𝑡|.

In order for the metric to be smooth, we introduce the resolved plumbing space

which involves three steps of construction. The first step in the resolution is the

blow up, in the real sense, of the singular fibers; this is well-defined in view of the

transversality of the self-instersection but results in a tied manifold since the boundary

faces are not globally embedded. The second step is to replace the 𝒞∞ structure by

its logarithmic weakening, i.e. replacing each (local) boundary defining function 𝑥 by

ilog 𝑥 = (log 𝑥−1)−1.

This gives a new tied manifold mapping smoothly to the previous one by a homeo-

morphism. These two steps can be thought of in combination as the ‘logarithmic blow

up’ of the singular fibers. The final step is to blow up the corners, of codimension

two, in the preimages of the singular fibers. This results in a manifold with corners,

𝑀mr, with the two boundary hypersurfaces denoted 𝐵I, resolving the singular fiber,

and 𝐵II arising at the final stage of the resolution. The parameter space 𝑍 is similarly

resolved to a manifold with corners by the logarithmic blow up of each of the singular

points.
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Figure 1-3: The metric resolution

It is shown below that the Lefschetz fibration lifts to a smooth map

𝑀mr
𝜓mr // 𝑍mr (1.17)

which is a b-fibration. In particular it follows from this that smooth vector fields on

𝑀mr which are tangent to all boundaries and to the fibers of 𝜓mr form the sections

of a smooth vector subbundle of b𝑇𝑀mr of rank two. The boundary hypersurface 𝐵II

has a preferred class of boundary defining functions, an element of which is denoted

𝜌II, arising from the logarithmic nature of the resolution, and this allows a Lie algebra

of vector fields to be defined by

𝑉 ∈ 𝒞∞(𝑀mr;
b𝑇𝑀mr), 𝑉 𝜓

*𝒞∞(𝑍mr) = 0, 𝑉 𝜌II ∈ 𝜌2II𝒞∞(𝑀mr). (1.18)

The possibly singular vector fields of the form 𝜌−1
II 𝑉, with 𝑉 as in (3.4), also form all

the sections of a smooth vector bundle, denoted 𝐿𝑇𝑀mr. This vector bundle inherits

a complex structure and hence has a smooth Hermitian metric, which is unique up

to a positive smooth conformal factor on 𝑀mr. The main result of this paper is:

Theorem 1.5. The fiber metrics of fixed constant curvature on a Lefschetz fibration,

in the sense discussed above, extend to a continuous Hermitian metric on 𝐿𝑇𝑀mr

which is related to a smooth Hermitian metric on this complex line bundle by a log-
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smooth conformal factor.

The plumbing metric can be extended (‘grafted’ as in [39]) to give an Hermitian

metric on 𝐿𝑇𝑀mr which has curvature 𝑅 equal to −1 near 𝐵II and to second order

at 𝐵I. We prove the theorem above by constructing the conformal factor 𝑒2𝑓 for

this metric which satisfies the curvature equation, ensuring that the new metric has

curvature −1 :

(𝛥+ 2)𝑓 + (𝑅 + 1) = −𝑒2𝑓 + 1 + 2𝑓 = 𝑂(𝑓 2). (1.19)

This equation is first solved in the sense of formal power series (with logarithms)

at both boundaries, 𝐵I and 𝐵II, which gives us an approximate solution 𝑓0 with

−𝛥𝑓0 = 𝑅 + 𝑒2𝑓0 + 𝑔, 𝑔 ∈ 𝑠∞𝑡 𝒞∞(𝑀mr).

Then a solution 𝑓 = 𝑓0 + 𝑓 to (3.9) amounts to solving

𝑓 = −(𝛥+ 2)−1
(︁
2𝑓(𝑒2𝑓0 − 1) + 𝑒2𝑓0(𝑒2𝑓 − 1− 2𝑓)− 𝑔

)︁
= 𝐾(𝑓).

Here the non-linear operator 𝐾 is at least quadratic in 𝑓 and the boundedness of

(𝛥 + 2)−1 on 𝜌
− 1

2
II 𝐻

𝑀
b (𝑀mr) for all 𝑀 allow the Inverse Function Theorem to be

applied to show that 𝑓 ∈ 𝑠∞𝑡 𝒞∞(𝑀mr) and hence that 𝑓 itself is log-smooth.

In §3.1 the model space and metric are analysed and in §3.2 the global resolution

is described and the proof of the theorem above is outlined. The linearized model

involves the inverse of 𝛥+2 for the Laplacian on the fibers and the uniform behavior,

at the singular fibers, of this operator is explained in §3.3. The solution of the curva-

ture problem in formal power series is discussed in §3.4 and using this the regularity

of the fiber metric is shown in §3.5.

1.3 Resolution of eigenvalues

This project is an explicit construction for an example of the Albin–Melrose resolution

of compact group action on a compact manifold [1]. Such resolution of group actions
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is interesting because on the resolved space, the group-equivariant objects are well-

defined and smooth. Albin–Melrose gave a general scheme of how to resolve the group

actions according to the index of isotropy types, namely, an iterative scheme where

the smallest isotropy type is blown up and then the next level of stratum could be

uniform.

Theorem 1.6 ([1]). A compact manifold with corners, M, with a smooth boundary

intersection free action by a compact Lie group G, has a canonical full resolution,

𝑌 (𝑀), obtained by iterative blow-up of minimal isotropy types.

Here we consider the action of the unitary group 𝑈(𝑛) on the space of 𝑛-dimensional

self-adjoint matrices 𝑆(𝑛) and construct the resolved space 𝑆(𝑛) with a fixed isotropy

type, that is, 𝑆(𝑛)/𝑈(𝑛) is a smooth manifold. We introduce the following two defi-

nitions of resolutions:

Definition 1.1 (eigenresolution). By an eigenresolution of 𝑆, we mean a manifold

with corners 𝑆, with a surjective smooth map 𝛽 : 𝑆 → 𝑆 such that the self-adjoint

matrices have a smooth (local) diagonalization when lifted to 𝑆, with eigenvalues lifted

to smooth functions on 𝑆.

Definition 1.2 (full eigenresolution). A full eigenresolution is an eigenresolution

with global eigenbundles. The eigenvalues are lifted to 𝑛 smooth functions 𝑓𝑖 on 𝑆,

and the trivial n-dimensional complex vector bundle on 𝑆 is decomposed into 𝑛 smooth

line bundles 𝑆 × C𝑛 =
⨁︀𝑛

𝑖=1𝐸𝑖 such that 𝛽(𝑥)𝑣𝑖 = 𝑓𝑖(𝑥)𝑣𝑖,∀ 𝑣𝑖 ∈ 𝐸𝑖(𝑥),∀ 𝑥 ∈ 𝑆.

The matrices belong to different isotropy types, in this case, are indexed by the

clustering of eigenvalues. First the two dimensional matrix case is explicitly com-

puted, where the only singularities are the multiples of the identity matrix. Then

for higher dimensional matrices, a local product structure using the Grassmannian is

described, so we show that when there is a uniform spectral gap in the neighborhood,

there is a local product decomposition into two lower rank matrices and a neighbor-

hood in the Grassmannian. Then using this decomposition, we show that the blow

up action can be done iteratively, each time blowing up the smallest isotropy type,

which in our case is the matrices with the smallest number of different eigenvalues.
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Theorem 1.7 ([48]). The iterative blow up of the isotropy types in 𝑆 (in an order

compatible with inclusion of the conjugation class of the isotropy group) yields an

eigenresolution. In particular, radial blow up gives a full eigenresolution.

We also discuss the difference between radial blow up and projective ones. We

show in the example of two dimensional matrices that only after radial blow up the

trivial C2 bundle splits into two global line bundles, while in the projective case there

is no global splitting, which gives an example of the discussions in [1] that projective

blow up does not induce a global resolution.
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Chapter 2

The eleven dimensional supergravity

equations on edge manifolds

2.1 Introduction

Supergravity is a theory of local supersymmetry, which arises in the representations

of super Lie algebras. Nahm [37] showed that the dimension of the system is at most

eleven in order for the system to be physical, and in this dimension if the system

exists then it would be unique. The existence of such systems was shown later by

Cremmer–Scherk [6] by constructing a specific system. Recently, Witten [45] showed

that under AdS/CFT correspondence the M-theory is related to the 11-dimensional

supergravity system, and as a result people start to work on this subject again [3].

Systems of lower dimensions can be obtained by dimensional reduction, which breaks

into many smaller subfields, and in general there are many such systems. The full

eleven dimensional case, with only two fields, is in many ways the simplest to consider.

A supergravity system is a low energy approximation to string theories, and can

be viewed as a generalization of Einstein’s equation:𝑅𝛼𝛽 = 𝑛𝑔𝛼𝛽. We are specifically

interested in the bosonic sections in the supergravity theory, which is a system of

equations on the 11-dimensional product manifold 𝑀 = B7 × S4 that solves for a

metric, 𝑔, and a 4-form, 𝐹 . Derived as the variational equations from a Lagrangian,
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the supergravity equations are as follows:

𝑅𝛼𝛽 = 1
12
(𝐹𝛼𝛾1𝛾2𝛾3𝐹

𝛾1𝛾2𝛾3
𝛽 − 1

12
𝐹𝛾1𝛾2𝛾3𝛾4𝐹

𝛾1𝛾2𝛾3𝛾4𝑔𝛼𝛽)

𝑑 * 𝐹 = −1
2
𝐹 ∧ 𝐹

𝑑𝐹 = 0

(2.1)

The nonlinear supergravity operator has an edge structure in the sense of Mazzeo

[25], which is a natural generalization in the context of the product of a conformally

compact manifold and a compact manifold. We consider those solutions that are

sections of the edge bundles, which are rescalings of the usual form bundles. The

Fredholm property of certain elliptic edge operators is related to the invertibility of

the corresponding normal operator 𝑁(𝐿), which is the lift of the operator to the front

face of the double stretched space 𝑋2
𝑒 . The invertibility of the normal operator is in

turn related to its action on functions polyhomogeneous at the left boundary of 𝑋2
𝑒 ,

which is determined by the indicial operator. The inverse of the indicial operator

𝐼𝜃(𝐿)
−1 exists and is meromorphic on the complement of a discrete set spec𝑏 𝐿, which

is the indicial roots of 𝐿. In this way the indicial operator as a model on the boundary

determines the leading order expansion of the solution.

One solution for this system is given by a product of the round sphere with a

Poincaré–Einstein metric on B7 with a volume form on the 4-sphere, in particular the

Freund–Rubin solution [11] is contained in this class. Recall that a Poincaré–Einstein

manifold is one that satisfies the vacuum Einstein equation and has a conformal

boundary. In the paper by Graham and Lee [15], they constructed the solutions

which are 𝐶𝑛−1,𝛾 close to the hyperbolic metric on the ball B𝑛 near the boundary,

and showed that every such perturbation is prescribed by the conformal data on the

boundary sphere. We will follow a similar idea here for the equation (2.1), replacing

the nonlinear Ricci curvature operator by the supergravity operator, considering its

linearization around one of the product solutions, and using a perturbation argument

to show that all the solutions nearby are determined by the metric and form data on

the boundary.

Kantor studied this problem in his thesis [20], where he computed the indicial
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roots of the system and produced one family of solutions by varying along a specific

direction of the form. Here we use a different decomposition that gives the same

indicial roots and show that all the solutions nearby are prescribed by boundary data

for the linearized operator, more specifically, the indicial kernels corresponding to

three pairs of special indicial roots.

2.1.1 Equations derived from the Lagrangian

The 11-dimension supergravity theory contains the following information on an 11-

dimensional manifold 𝑀 : gravity metric 𝑔 ∈ Sym2(𝑀) and a 4-form 𝐹 ∈ ⋀︀4(𝑀). In

this theory, the Lagrangian 𝐿 is defined as

𝐿(𝑔, 𝐴) =

∫︁
𝑀

𝑅𝑑𝑉𝑔 −
1

2

(︂∫︁
𝑀

𝐹 ∧ *𝐹 +

∫︁
𝑀

1

3
𝐴 ∧ 𝐹 ∧ 𝐹

)︂
(2.2)

Here R is the scalar curvature of the metric g, A is a 3-form such that F is the field

strength 𝐹 = 𝑑𝐴. The first term is the calssical Einstein-Hilbert action term, where

the second and the third one are respectively Yang-Mills type and Maxwell type term

for a field. Note here we are only interested in the equations derived from the variation

of Lagrangian, therefore 𝐴 needs not to be globally defined since we only need 𝑑𝐴

because the variation only depends on 𝑑𝐴:

𝛿𝐴𝑖

(︂∫︁
𝑈𝑖

𝐴𝑖 ∧ 𝐹 ∧ 𝐹
)︂

= 3

∫︁
𝑈𝑖

𝛿𝐴𝑖 ∧ 𝐹 ∧ 𝐹 (2.3)

which shows that the variation is 𝐹 ∧ 𝐹 which does not depend on 𝐴𝑖.

The supergravity equations, derived from the Lagrangian above, are (2.1). To

deal with the fact the Ricci operator is not elliptic, we follow [15] and add a gauge

breaking term 𝜑(𝑔, 𝑡) = 𝛿*𝑔𝑔𝛥𝑔𝑡𝐼𝑑 to the first equation. Then we apply 𝑑* to the 2nd

equation, and combine this with the third equation to obtain the gauged supergravity

system:

𝑄 : 𝑆2(𝑇 *𝑀)⊕⋀︀4(𝑀)→ 𝑆2(𝑇 *𝑀)⊕⋀︀4(𝑀)
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⎛⎝ 𝑔

𝐹

⎞⎠ ↦→
⎛⎝ Ric(𝑔)− 𝜑(𝑔,𝑡) − 𝐹 ∘ 𝐹

𝑑 * (𝑑 * 𝐹 + 1
2
𝐹 ∧ 𝐹 )

⎞⎠ (2.4)

which is the nonlinear system we will be studying.

2.1.2 Edge metric and edge Sobolev space

Edge differential and pseudodifferential operators were formally introduced by Mazzeo

[25]. The general setting is a compact manifold with boundary, M, where the bound-

ary has in addition a fibration

𝜋 : 𝜕𝑀 → 𝐵,

with typical fiber F. In the setting considered here, 𝑀 = B7 × S4 is the product of

a seven dimensional closed ball identified as hyperbolic space and a four-dimensional

sphere. The fibration here identifies the four-sphere as fibre:

𝜋 : 𝜕(H7 × S4) = S6 × S4 → S6.

The space of edge vector fields 𝒱𝑒(𝑀) is a Lie algebra consisting of those smooth

vector fields on M which are tangent to the boundary and such that the induced

vector field on the boundary is tangent to the fibre of 𝜋. Another vector field Lie

algebra we will be using is 𝒱𝑏 which is the space of all smooth vector field tangent to

the boundary. As a consequence,

𝒱𝑒 ⊂ 𝒱𝑏, [𝒱𝑒,𝒱𝑏] ⊂ 𝒱𝑏. (2.5)

Let (𝑥, 𝑦1, 𝑦2, ...𝑦6) be coordinates of the upper half space model for hyperbolic

space H7, and 𝑧𝑗 be coordinates on the sphere S4. Then locally 𝒱𝑏 is spanned by

𝑥𝜕𝑥, 𝜕𝑦, 𝜕𝑧, while 𝒱𝑒 is spanned by

𝑥𝜕𝑥, 𝑥𝜕𝑦, 𝜕𝑧.
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The edge forms are the dual to the edge vector fields 𝒱𝑒, with a basis:

(︁𝑑𝑥
𝑥
,
𝑑𝑦

𝑥
, 𝑑𝑧
)︁
.

The 2-tensor bundle is formed by the tensor product of the basis forms. Edge dif-

ferential operators form the linear span of products of edge vector fields over smooth

functions. Denote the set of 𝑚-th order edge operator as Diff𝑚𝑒 (𝑀). We will see that

the supergravity operator 𝑄 is a nonlinear edge differental operator.

The edge-Sobolev spaces are given by

𝐻𝑠
𝑒 (𝑀) = {𝑢 ∈ 𝐿2(𝑀)|𝑉 𝑘

𝑒 𝑢 ∈ 𝐿2(𝑀), 0 ≤ 𝑘 ≤ 𝑠}.

However, for purpose of regularity we are also interested in hybrid spaces with

additional tangential regularity. The exsitence of solutions with infinite smooth b-

regularity gives the solution with polyhomogeneous expansions. Therefore we set the

Sobolev space with boundary and edge regularity as:

𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) = {𝑢 ∈ 𝐻𝑠

𝑒 (𝑀)|𝑉 𝑖
𝑏 𝑢 ∈ 𝐻𝑠

𝑒 (𝑀), 0 ≤ 𝑖 ≤ 𝑘}

By the commuting relation (2.5), 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) is well defined, that is, independent to the

order of applying edge and b-vector fields.

These Sobolev spaces are defined so that edge operators maps between suitable

spaces, i.e., for any m-th order edge operator 𝑃 ∈ Diff𝑚𝑒 𝑀 ,

𝑃 : 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀)→ 𝐻𝑠−𝑚,𝑘

𝑒,𝑏 (𝑀),𝑚 ≤ 𝑠. (2.6)

for which the proof is contained in section 2.5.

2.1.3 Poincaré–Einstein metric on B7

Now let us go back to the Poincaré–Einstein metric. As mentioned above, the product

of a Poincaré–Einstein metric with a sphere metric provides a large family of solutions
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to this system, which is known as Freund–Rubin solutions. More specifically, for any

Poincaré–Einstein metric ℎ with curvature −6𝑐2, the following metric and 4-form

gives a solution to equations 𝑄(𝑢) = 0:

𝑢 =
(︁
ℎ× 9

𝑐2
𝑔S4 , 𝑐𝑑𝑉S4

)︁
(2.7)

According to [15], there is a large class of Poincaré–Einstein metrics which can

be obtained by perturbing the hyperbolic metric on the boundary. More specifically,

there is the following result:

Theorem 2.1 ([6]). Let 𝑀 = B𝑛+1 be the unit ball and ℎ̂ the standard metric on

S𝑛. For any smooth Riemannian metric 𝑔 on S𝑛 which is sufficiently close to ℎ̂ in

𝐶2,𝛼norm if 𝑛 > 4 or 𝐶3,𝛼 norm if 𝑛 = 3, for some 0 < 𝛼 < 1, there exists a smooth

metric 𝑔 on the interior of 𝑀 , with a 𝐶0 conformal compactification satisfying

Ric(𝑔) = −𝑛𝑔, 𝑔 has conformal infinity [𝑔].

We are mainly interested in the solutions that are perturbations of such a family

of solutions, in particular, we will focus on the solutions with 𝑐 = 6 above with

hyperbolic metric on the ball and a scaled metric on the sphere, i.e. on 𝑋 = H7×S4:

(︁
𝑔𝐻 ×

1

4
𝑔𝑆, 6𝑑𝑉S4

)︁
, (2.8)

which is also known as the Freund–Rubin solution.

2.1.4 Main theorem

In our theorem, we will fix a Poincaré–Einstein metric ℎ on B7 which is sufficiently

close to the hyperbolic metric. From the discussion above we know (ℎ× 1
4
𝑔S4 , 6𝑑𝑉S4)

satisfy the gauged supergravity equation (2.4). As in Graham–Lee’s paper, the

Poincaré–Einstein metrics are paramtrized by the boundary data on S6, i.e. near

any fixed Poincaré–Einstein metric, there exists a unique solution to the Einstein
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equation for a small (smooth) perturbation of the boundary conformal data.

For supergravity equations, we have additional parametrization data. Let

𝑉1 := {𝑣1 ∈ 𝐶∞(S6;
⋀︀3 𝑇 *S6) | *S6𝑣1 = 𝑖𝑣1}.

Let 𝑉 ±
2 , 𝑉 ±

3 be the smooth functions on the 6-sphere tensored with a finite dimensional

1-form space on S4:

𝑉2 := {𝑣2 ⊗ 𝜉16 : 𝑣2 ∈ 𝐶∞(S6;R), 𝜉16 ∈ 𝐸𝑐𝑙
16(S4)}

𝑉3 := {𝑣3 ⊗ 𝜉40 : 𝑣3 ∈ 𝐶∞(S6;R), 𝜉40 ∈ 𝐸𝑐𝑙
40(S4)}

where 𝐸𝑐𝑙
16(S4) and 𝐸𝑐𝑙

40 are closed 1-forms with eigenvalue 16 and 40 on the 4-sphere.

We also require three numbers that define the leading term in the expansion of

the solution, which come from indicial roots:

𝜃±1 = 3± 6𝑖, 𝜃±2 = 3± 𝑖
√
21116145/1655, 𝜃3 = 3± 𝑖3

√
582842/20098. (2.9)

If we fix an element [ℎ̂] in the conformal boundary data to the leading order,

the solution is parametrized by a small perturbation from the data on the bundle

𝐶∞(S6;⊕3
𝑖=1𝑉𝑖). The metric part of the solution to the leading order is given by the

conformal infinity [ℎ̂], whereas the form part to the leading order is given by the

oscilatory data 𝑣+𝑖 𝑥𝜃
+
𝑖 + 𝑆𝑖(𝑣𝑖)𝑥

𝜃− .

To state the theorem, we give the following notations. Denote

𝑢0 :=
(︁
𝑔H7 × 1

4
𝑔S4 , 6VolS4

)︁
and [ℎ̂] is close to 𝑔0 as metric on S6. A small neighborhood in the bundle is given by

𝑈 ⊂ 𝐶∞(S6;⊕3
𝑖=1𝑉𝑖)

Theorem 2.2. For 𝛿 ∈ (0, 1), 𝑠 ≥ 2 and 𝑘 ≫ 0, in the space of solutions to 𝑄(𝑢) = 0
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in 𝑥3−𝛿𝐻∞
𝑏 (𝑀 ;𝑊 ), a neighborhood of 𝑢0 is smoothly parametrized by [ℎ̂] and 𝑈 . For

a smooth section 𝑣 ∈ 𝑈 with a sufficiently small 𝐻𝑘 norm and a [ℎ̂], there is a unique

𝑔 ∈ 𝑥−𝛿𝐻∞
𝑏 (𝑀 ; Sym2(𝑒𝑇 *𝑀)) and a 4-form 𝐹 ∈ 𝑥−𝛿𝐻∞

𝑏 (𝑀 ; 𝑒
⋀︀4(𝑇 *𝑀)) prescribed

by those data, such that (𝑔 − ℎ, 𝐹 − 𝑉0) ∈ 𝑥−𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) and 𝑄(𝑢) = 0.

Our approach is based on the implicit function theorem. We consider the operator

𝑄𝑣(·) = 𝑄(·+𝑣). A right inverse of the linearization, denoted (𝑑𝑄𝑣)
−1, is constructed,

and we show that 𝑄𝑣 ∘ (𝑑𝑄𝑣)
−1 is an isomorphism on the Sobolev space 𝐻𝑠,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )

corresponding to the range of 𝑑𝑄𝑣.

To get the isomorphism result, we note that the model operator on the boundary

is 𝑆𝑂(5)-invariant, and therefore utilize the Hodge decomposition of functions and

forms on 𝑆4. We decompose the equations into blocks and compute the indicial roots

of each block. The indicial roots are defined by the indical operator on each fiber

𝜋−1(𝑝):

𝐼𝑝[𝑄](𝑠)𝑣 = 𝑥−𝑠𝑄(𝑥𝑠𝑣)|𝜋−1(𝑝).

Indicial roots are those 𝑠 that the indicial operator has a nontrivial kernel. These

roots are related to the leading order of the solution expansions near the boundary.

Once the indicial roots are computed, we construct the operator (𝑑𝑄𝑣)
−1. The

operator exihibits different properties for large and small spherical eigenvalues. For

large ones, the operator is already invertible by constructing a parametrix in the

small edge calculus. For small eigenvalues, two resolvents 𝑅± = lim𝜖→0(𝑑𝑄 ± 𝑖𝜖)−1

are constructed. We show that those elements corresponding to indicial roots with

real part equal to 3 are the boundary perturbations needed in the theorem.

In section 2.2 we show the derivation of the equations from the Lagrangian and

discuss the gauge breaking condition. In section 2.3 we study the linearized operator

and show it is Fredholm on suitable edge Sobolev spaces. In section 2.4 we construct

the solutions for the nonlinear equations using the implicit function theorem.
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2.2 Gauged operator construction

2.2.1 Equations derived from Lagrangian

The supergravity system is derived as the variational equations for the following

Lagrangian:

𝐿(𝑔, 𝐴) =

∫︁
𝑋

𝑅𝑑𝑉𝑔 −
1

2

(︂∫︁
𝑋

𝐹 ∧ *𝐹 +

∫︁
𝑋

1

3
𝐴 ∧ 𝐹 ∧ 𝐹

)︂
.

Now we compute its variation along two directions, namely, the metric and the form

direction. The first term is the Einstein-Hilbert action, for which the variation in 𝑔 is

𝛿𝑔

(︂∫︁
𝑑𝑉𝑔𝑅

)︂
=

∫︁ (︂
𝑅𝛼𝛽 −

𝑅

2
𝑔𝛼𝛽𝛿𝑔

𝛼𝛽𝑑𝑉𝑔

)︂
. (2.10)

Now we compute the variation of the second term 𝐹 ∧*𝐹 in the metric direction,

which is

𝛿𝑔

(︂
1

2

∫︁
𝐹 ∧ *𝐹

)︂
=

2

4!

∫︁
𝐹𝜂1...𝜂4𝐹𝜉1...𝜉4𝑔

𝜂2𝜉2𝑔𝜂3𝜉3𝑔𝜂4𝜉4𝛿𝑔𝜂1𝜉1𝑑𝑉𝑔 −
1

4

∫︁
𝐹 ∧ *𝐹𝑔𝛼𝛽𝛿𝑔𝛼𝛽.

(2.11)

Combining the two variations and setting them equal to zero, we get

𝑅𝛼𝛽 −
1

2
𝑅𝑔𝛼𝛽 =

1

12
𝐹𝛼𝜂1𝜂2𝜂3𝐹

𝜂1𝜂2𝜂3
𝛽 − 1

4
⟨𝐹, 𝐹 ⟩𝑔𝛼𝛽. (2.12)

Here ⟨∙, ∙⟩ is the inner product on forms:

⟨𝐹, 𝐹 ⟩ = 1

4!
𝐹𝜂1...𝜂4𝐹

𝜂1...𝜂4 . (2.13)

Taking the trace of the equation, we get

𝑅 =
1

6
⟨𝐹, 𝐹 ⟩. (2.14)

35



Finally, substituting 𝑅 in the equation, we get

𝑅𝛼𝛽 =
1

12
(𝐹𝛼𝛾1𝛾2𝛾3𝐹

𝛾1𝛾2𝛾3
𝛽 − 1

12
𝐹𝛾1𝛾2𝛾3𝛾4𝐹

𝛾1𝛾2𝛾3𝛾4𝑔𝛼𝛽), (2.15)

which gives the first equation in supergravity system2.1.

The variation with respect to the 3-form 𝐴 is

𝛿𝐴𝑆 =

∫︁
𝛿𝐹∧*𝐹− 1

6
𝛿𝐴∧𝐹∧𝐹− 1

3

∫︁
𝐴∧𝛿𝐹∧𝐹 = −

∫︁
𝛿𝐴∧(𝑑*𝐹+

1

2
𝐹∧𝐹 ), (2.16)

which gives the second supergravity equation:

𝑑 * 𝐹 +
1

2
𝐹 ∧ 𝐹 = 0. (2.17)

Since 𝐹 is the differential of 𝐴, so we have the third equation

𝑑𝐹 = 0. (2.18)

Product solutions are obtained as follows: let 𝑋7 be an Einstein manifold with

negative scalar curvature 𝛼 < 0 and 𝐾4 be an Einstein manifold with positive scalar

curvature 𝛽 > 0. Consider 𝑋 ×𝐾 with the product metric; then we have

𝑅𝑖𝑐 =

⎛⎝ 6𝛼𝑔𝑀𝐴𝐵 0

0 3𝛽𝑔𝐾𝑎𝑏

⎞⎠ (2.19)

Let 𝐹 = 𝑐𝑉𝐾 . A straightforward computation shows

(𝐹 ∘ 𝐹 )𝛼𝛽 =
𝑐2

12

⎛⎝ −2𝑔𝑀𝐴𝐵 0

0 4𝑔𝐾𝑎𝑏

⎞⎠ . (2.20)

Therefore any set (𝑐, 𝛼, 𝛽) satisfying

−𝑐2/6 = 6𝛼, 𝑐2/3 = 3𝛽 (2.21)
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corresponds to a solution to the supergravity equation.

2.2.2 Change to a square system

In order to write the equations as a square system, we change the second equation to

second order by applying 𝑑*. Combining with the closed condition 𝑑𝐹 = 0, 𝑑 * 𝑑 * 𝐹
is the same as 𝛥𝐹 . This leads to the following square system

Ric 𝑔 − 𝐹 ∘ 𝐹 = 0 (2.22)

𝛥𝐹 +
1

2
𝑑 * (𝐹 ∧ 𝐹 ) = 0 (2.23)

Proposition 2.1. After changing to the square system, the kernel is the same as the

kernel of the original system.

Proof. The only change here is that we introduced 𝑑* = *𝑀(𝑑S4 + 𝑑H7)*𝑀 , in which

*𝑀 and 𝑑S4 are both isomorphisms. Therefore we only need to consider the possible

kernel introduced by 𝑑H7 in the solution space. On the hyperpolic space, there are no

𝐿2 kernel for 𝑑H7 because of the representation, and the nonlinear terms after taking

off the kernel of the linearized operatoris of decay 𝑥3+𝛿.

2.2.3 Gauge condition

Following [15] in the setting of Poincaré–Einstein metric, we add a gauge operator to

the curvature term where 𝑔 is the background metric:

𝜑(𝑡, 𝑔) = 𝛿*𝑡 (𝑡𝑔)
−1𝛿𝑡𝐺𝑡𝑔.

Here

[𝐺𝑡𝑔]𝑖𝑗 = 𝑔𝑖𝑗 −
1

2
𝑔𝑘𝑘𝑡𝑖𝑗, [𝛿𝑡𝑔]𝑖 = −𝑔𝑗𝑖𝑗,

𝛿*𝑔 is the formal adjoint of 𝛿𝑔, which can be written as

[𝛿*𝑔𝑤]𝑖𝑗 =
1

2
(𝑤𝑖,𝑗 + 𝑤𝑗,𝑖),
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and

[(𝑡𝑔)−1𝑤]𝑖 = 𝑡𝑖𝑗(𝑔
−1)𝑗𝑘𝑤𝑘.

By adding the gauge term we get an operator 𝑄, which is a map from the space

of symmetric 2-tensors and closed 4-forms to the space of symmetric 2-tensors and

closed 4-forms:

𝑄 : 𝑆2(𝑇 *𝑀)⊕⋀︀4
𝑐𝑙(𝑀)→ 𝑆2(𝑇 *𝑀)⊕⋀︀4

𝑐𝑙(𝑀)

⎛⎝ 𝑔

𝐹

⎞⎠ ↦→
⎛⎝ Ric(𝑔)− 𝜑(𝑡, 𝑔)− 𝐹 ∘ 𝐹

𝑑 * (𝑑 * 𝐹 + 1
2
𝐹 ∧ 𝐹 )

⎞⎠ (2.24)

which will be the main object to study.

As discussed in [15], 𝑅𝑖𝑐(𝑔) + 𝑛𝑔 − 𝜑(𝑡, 𝑔) = 0 holds if and only if 𝑖𝑑 : (𝑀, 𝑔) →
(𝑀, 𝑡) is harmonic and 𝑅𝑖𝑐(𝑔)+𝑛𝑔 = 0. We will show that the gauged equations here

yield the solution to the supergravity equations in a similar manner.

We first prove a gauge elimination lemma for the linearized operator. As can

be seen from (2.24), only the first part (the map on 2-tensors) involves the gauge

term, therefore we restrict the discussion to the first part of 𝑑𝑄. We use 𝑑𝑄𝑔(𝑘,𝐻)

to denote the linearization of the tensor part of 𝑄 along the metric direction at the

point (𝑔, 𝐹 ), which acts on (𝑘,𝐻). First we give the following gauge-breaking lemma

for the linearized operator, which is adapted from Theorem 4.2 in [20].

Lemma 2.1. If (𝑘,𝐻) satisfies the linearized equation 𝑑𝑄𝑔(𝑘,𝐻) = 0, then there

exists a 1-form 𝑣 and 𝑘 = 𝑘 + 𝐿𝑣♯𝑔 such that 𝑑𝑆𝑔(𝑘,𝐻) = 0.

To prove the proposition, we first determine the equation to solve for such a

1-form 𝑣.

Lemma 2.2. If a 1-form 𝑣 satisfies

((𝛥𝑟𝑜𝑢𝑔ℎ −𝑅𝑖𝑐)𝑣)𝜆 =
1

2
(2∇𝛼𝑘𝛼𝜆 −∇𝜆𝑇𝑟𝑔(𝑘)) (2.25)
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then 𝑘 = 𝑘 + 𝐿𝑣♯𝑔 satisfies the gauge condition

𝑑𝜑(𝑡, 𝑔)𝑔(𝑘) = 0.

.

Proof. Let Ψ(𝑣, 𝑔) be the map

Ψ(𝑣, 𝑔)𝑘 = (𝜑*
𝑣♯𝑔)

𝛼𝛽(Γ𝑘𝛼𝛽(𝜑
*
𝑣♯𝑔)− Γ𝑘𝛼𝛽(𝑡)).

This satisfies

𝛿*𝑔𝑔𝐷𝑣Ψ(0, 𝑡)(𝑣) = 𝐷𝑡𝜑(𝐿𝑣♯𝑡𝑔), 𝛿
*
𝑔𝑔𝐷𝑔Ψ(0, 𝑡)(𝑘) = 𝐷𝑡𝜑(𝑘).

Therefore in order to get 𝐷𝑡𝜑(𝑘) = 0, we only need

−𝐷𝑣Ψ(0, 𝑡)(𝑣) = 𝐷𝑔Ψ(0, 𝑡)(𝑘).

The left hand side can be reduced to

−𝑔𝛼𝛽∇𝛼∇𝛽𝑣
𝑘 −𝑅𝑘

𝜇𝑣
𝜇 = (𝛥𝑟𝑜𝑢𝑔ℎ −𝑅𝑖𝑐)𝑣𝑘

and right hand side is

1

2
𝑔𝛼𝛽𝑔𝑘𝜆(∇𝛼𝑘𝛽𝜆 +∇𝛽𝑘𝛼𝜆 −∇𝜆𝑘𝛼𝛽).

Lowering the index on both side, we get

((𝛥𝑟𝑜𝑢𝑔ℎ −𝑅𝑖𝑐)𝑣)𝜆 =
1

2
(2∇𝛼𝑘𝛼𝜆 −∇𝜆𝑇𝑟𝑔(𝑘)).

Next we discuss the solvability of the operator defined above in (2.25).
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Lemma 2.3. If |𝛿| < 1, then at the point 𝑔0 = 𝑔𝐻 × 1
4
𝑔𝑆 the operator

𝛥𝑟𝑜𝑢𝑔ℎ −𝑅𝑖𝑐 : 𝑥𝛿𝐻2(𝑒𝑇 *𝑀)→ 𝑥𝛿𝐿2(𝑒𝑇 *𝑀)

is an isomorphism.

Proof. Using the splitting

𝑒𝑇 *𝑀 ∼= 𝜋*
H
𝑒𝑇 *H7 ⊕ 𝜋*

S
𝑒𝑇 *S4

and the product structure of the metric, we write the operator as

𝛥𝑟𝑜𝑢𝑔ℎ −𝑅𝑖𝑐 = 𝛥𝑟𝑜𝑢𝑔ℎ
𝐻 +𝛥𝑟𝑜𝑢𝑔ℎ

𝑆 − diag(−6, 12).

It decomposes into two parts: trace and trace-free 2-tensors. Decomposing into eigen-

functions on the 4-sphere, consider the following two operators:

𝐿𝑡𝑟 = 𝛥H + 𝜆− 24 : 𝐶∞(H7)→ 𝐶∞(H7), (2.26)

𝐿𝑡𝑓 = 𝛥𝑟𝑜𝑢𝑔ℎ
H + 𝜆′ + 6 : 𝑒

⋀︀*H7 → 𝑒
⋀︀*H7 (2.27)

Consider the smallest eigenvalue in each case: 𝜆𝑡𝑟 = 16, 𝜆𝑡𝑓 = 0. The indicial radius

for 𝐿𝑡𝑟 is 1 and for 𝐿𝑡𝑓 is 4. Then using theorem 6.1 in [25], for |𝛿| < 1 the operator 𝐿𝑡𝑟

as a map from 𝑥𝛿𝐻2(H7) → 𝑥𝛿𝐿2(H7) has closed range and is essentially injective.

Moreover, since the kernel of this operator lies in the 𝐿2 eigen space of H7 which

vanishes, therefore the operator is actually injective. By self-adjointness, it is also

surjective on the same range for 𝛿. The same argument holds for 𝐿𝑡𝑓 , which is also

Fredholm and an isomorphism on 𝑥𝛿𝐻2(𝑒
⋀︀*H7)→ 𝑥𝛿𝐿2(𝑒

⋀︀*H7) for |𝛿| < 4.

Combining the statements for 𝐿𝑡𝑟 and 𝐿𝑡𝑓 , we conclude that 𝛥𝑟𝑜𝑢𝑔ℎ − 𝑅𝑖𝑐 is an

isomorphism between 𝑥𝛿𝐻2(𝑒𝑇 *𝑀)→ 𝑥𝛿𝐿2(𝑒𝑇 *𝑀) for |𝛿| < 1.

The isomorphism holds true for metrics nearby, by a simple perturbation argu-
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ment.

Corollary 1. At any metric 𝑔 which is close to 𝑔0, for |𝛿| < 1, 𝛥𝑟𝑜𝑢𝑔ℎ − 𝑅𝑖𝑐 is an

isomorphism as a map

𝛥𝑟𝑜𝑢𝑔ℎ −𝑅𝑖𝑐 : 𝑥𝛿𝐻2(𝑒𝑇 *𝑀)→ 𝑥𝛿𝐿2(𝑒𝑇 *𝑀).

With the lemmas above, we can prove the proposition.

Proof of Proposition 2.1. From Lemma 1 we know 𝛥𝑟𝑜𝑢𝑔ℎ − 𝑅𝑖𝑐 : 𝑥𝛿𝐻2(𝑒𝑇 *𝑀) →
𝑥𝛿𝐿2(𝑒𝑇 *𝑀) is an isomorphism, therefore there exists a one-form 𝑣 satisfying 2.2.

Then from Lemma 2.2, 𝑘 = 𝑘 + 𝐿𝑣♯𝑔 satisfies 𝐷𝑔𝜑(𝑘) = 0. Putting it back to the

linearized equation, we get 𝑑𝑆𝑔(𝑘,𝐻) = 0.

Next we prove the nonlinear version of gauge elimination by using integral curves.

Proposition 2.2. If a metric and a closed 4-form (𝑔, 𝑉 ) satisfies the gauged equations

𝑄(𝑔, 𝑉 ) = 0, then there is an diffeomorphism 𝑔 ↦→ 𝑔 such that 𝜑(𝑔, 𝑡) = 0 and (𝑔, 𝑉 )

is a solution to equation( 2.1) i.e. 𝑆(𝑔, 𝑉 ) = 0.

Proof. Consider the integral curve on the manifold of metrics close to the product

metric, defined by the vector field at each point 𝑔 with value 𝑘𝑔 = 𝑘𝑔 + 𝐿𝑣♯𝑔. Then

along this curve, it satisfies 𝐷𝑔𝑄(𝑘𝑔, 𝐻) = 0. Therefore 𝑄(𝑔, 𝑉 ) = 0.

We also need to show that 𝑔 has the same regularity as 𝑔. It suffices to show that

the vector field is smooth enough. Since 𝑣 solved above in Lemma 2.2 is polyhomo-

geneous, then the Lie derivative 𝐿𝑣♯𝑔 = ∇𝛼𝑣𝛽 +∇𝛽𝑣𝛼 is one order less smooth than

𝑣. However by integration we gain one order of regularity back. Therefore 𝑔 has the

same regularity as 𝑔.

2.3 Fredholm property of the linearized operator

We now consider the linearization of the gauged supergravity operator near the base

metric and 4-form (𝑔0, 𝐹 ) = (𝑔H7× 1
4
𝑔S4 , 6VolS4). The first step is to compute the indi-

cial roots and indicial kernels of this linearizaed operator, which is done with respect
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of the harmonic decomposition of the 4-sphere. As the eigenvalues becomes larger,

the indicial roots become further apart. Specifically, all of them are separated by real

part 3, with only three pairs of exceptions, where the indicial roots corresponding to

the lowest three eigenvalues lie on the 𝐿2 line which has real part equal to 3.

Once we identify these indicial roots, we proceed differently according to whether

the indicial roots land on the 𝐿2 line or not. We show that for most of the indi-

cial roots, the decomposed linearized operator is Fredholm on suitable edge Sobolev

spaces. This is done by using small edge calculus and 𝑆𝑂(5) invariance of the struc-

ture. For the three exceptional pairs we use scattering theory to construct two gen-

eralized inverses, which encode the boundary data that parametrize the kernel of the

linear operator.

We then describe the kernel of this linearized operator in terms of the two gener-

alized inverses, and a scattering matrix construction that gives the Poisson operator.

Nearby the Poincaré–Einstein metric product, a perturbation argument shows that

the space given by the difference of the two generalized inverses is transversal to the

range space of the linearized operator and therefore this space gives the kernel of

the linearized operator, which later will provide the kernel parametrization for the

nonlinear operator.

2.3.1 Linearization of the operator 𝑄

The nonlinear supergravity operator contains two parts: the gauged curvature op-

erator Ric−𝜑𝑔,𝑡 with its nonlinear part 𝐹 ∘ 𝐹 , and the first order differential of the

4-form 𝑑 * 𝐹 with its nonlinear part 𝐹 ∧ 𝐹 . Note that since the Hodge operator *
depends on the metric, the linearized operator couples the metric and the 4-form in

both of the equations.

Though we only consider the linearization about the base poduct metric 𝑔H7 ×
1
4
𝑔S4 , the computation below applies to other Poincaré–Einstein metrics satisfying the

relation 2.7 mentioned in the introduction. Since near the boundary the metric is the

same as H7 × S4, the discussion about edge operators in later sections would remain

the same.
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Proposition 2.3. The operator 𝑄 : 𝑊 → 𝑊 has the following linearization at the

point (𝑔0, 𝐹 ):

𝑑𝑄𝑔0,𝐹 : Γ(Sym2(𝑒𝑇 *𝑀)⊕ 𝑒
⋀︀4(𝑀))→ Γ(Sym2(𝑒𝑇 *𝑀)⊕ 𝑒

⋀︀4(𝑀))

⎛⎝ 𝑘

𝐻

⎞⎠ ↦→
⎛⎝ 𝛥𝑘 + LOT

𝑑 * (𝑑 *𝐻 + 6VolS ∧𝐻 + 6𝑑 *H 𝑘1,1 + 3𝑑(trH7(𝑘)− trS4(𝑘)) ∧ VolH)

⎞⎠
(2.28)

where the lower order term matrix LOT is as follows:

LOT =

⎛⎝ −𝑘𝐼𝐽 − 6 trS(𝑘)𝑡𝐼𝐽 + trH(𝑘)𝑡𝐼𝐽 + 2 *S 𝐻0,4𝑡𝐼𝐽 6𝑘1,1 − 3 *S 𝐻1,3

6𝑘1,1 − 3 *S 𝐻1,3 4𝑘𝑖𝑗 + 8 trS(𝑘)𝑡𝑖𝑗 − *S𝐻0,4𝑡𝑖𝑗

⎞⎠
We break the computation into a curvature part and a form part as follows.

Lemma 2.4. For 𝑘 ∈ Sym2(𝑒𝑇 *𝑀), the linearization of the gauge broken Ricci op-

erator at the base hyperbolic metric is

𝑑𝑔0(Ric−𝜑𝑔,𝑡)(𝑘) =
1

2
𝛥𝑟𝑜𝑢𝑔ℎ
𝑔0

𝑘 +𝑅(𝑘), (2.29)

where

𝑅(𝑘) =

⎛⎝ −7𝑘𝐼𝐽 + TrH7(𝑘)𝑔𝐼𝐽 0

0 16𝑘𝑖𝑗 − TrS4(𝑘)𝑔𝑖𝑗

⎞⎠ .

Proof. Following the result in [15], the linearization of the gauged operator at the

base metric 𝑡 is

𝑑𝑡(Ric−𝜑𝑔,𝑡)(𝑘) =
1

2
𝛥𝑟𝑜𝑢𝑔ℎ
𝑡 𝑘 + 𝑘𝛼𝛽𝑅𝛽𝛾𝛿𝛼 +

1

2
(𝑅𝛽

𝛾𝑘𝛽𝛿 +𝑅𝛽
𝛿 𝑘𝛽𝛾). (2.30)

Specifically, if the metric is constant sectional curvature near the boundary of 𝑀

which is the case for the conformal compact metric here (with sectional curvature

−1), the curvature term is diagonalized and can be written as

𝑅𝛼𝛽𝛿𝛽 = −(𝑔𝛼𝛿𝑔𝛾𝛽 − 𝑔𝛼𝛽𝑔𝛾𝛿),
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so the linearization of this total operator is as above.

Lemma 2.5. The linearization of 𝐹 ∘ 𝐹 along the 2-tensor direction and 4-form

direction are: for 𝑘 ∈ Sym2(𝑒𝑇 *𝑀)

𝑑𝑔0,6VolS(𝐹 ∘ 𝐹 )(𝑘)

=

⎛⎜⎜⎜⎜⎜⎝
1
36
𝑇𝑟𝑆(𝑘)𝑡𝐼𝐽 − 1

36
𝑘 + 2⟨𝑊,𝐻⟩𝑡 1

144
⟨𝑊,𝑊 ⟩𝑘𝐼𝑗

1
144
⟨𝑊,𝑊 ⟩𝑘𝐼𝑗

1
12

(︀
− 3𝑊𝑎𝑖1𝑖2𝑖3𝑊

𝑗2𝑗3
𝑏𝑗1

𝑡𝑖1𝑙1𝑘𝑙1𝑙2𝑡
𝑙2𝑗1

+ 4
12
𝐹𝑖1𝑖2𝑖3𝑖4𝐹

𝑖1𝑖2𝑖3
𝑗1

𝑡𝑗1𝑙1𝑘𝑙1𝑙2𝑡
𝑙2𝑖1𝑡𝑎𝑏 − 1

12
⟨𝑊,𝑊 ⟩𝑘𝑎𝑏

)︀

⎞⎟⎟⎟⎟⎟⎠ ,

(2.31)

and for 𝐻 ∈ 𝑒
⋀︀4(𝑇 *𝑀)

𝑑𝑔0,6VolS(𝐹 ∘ 𝐹 )(𝐻) =

⎛⎜⎜⎜⎝
1
72
𝑐2 *𝑆 𝐻(0,4)𝑡𝐴𝐵

1
3
(*𝑆𝐻(1,3))𝐴𝑏

3(*𝑆𝐻(1,3))𝐴𝑏

1
6
𝐻 𝑖1𝑖2𝑖3
𝑎 𝑊𝑏𝑖1𝑖2𝑖3

− 1
72
𝑊𝑖1𝑖2𝑖3𝑖4𝐻

𝑖1𝑖2𝑖3𝑖4𝑡𝑎𝑏

⎞⎟⎟⎟⎠ . (2.32)

Proof. The proof is by direct computation. Note that

𝐷𝑡,𝑊 (𝐹 ∘ 𝐹 )(𝐻) =

⎛⎝ 𝐻𝐻 𝐻𝑆

𝐻𝑆 𝑆𝑆

⎞⎠ ,

where

𝐻𝐻𝐴𝐵 = − 1

72
𝑊𝑖1𝑖2𝑖3𝑖4𝐻

𝑖1𝑖2𝑖3𝑖4𝑡𝐴𝐵 = − 1

72
𝑐2ℎ𝑡𝐴𝐵 =

1

72
𝑐2 *S 𝐻(0,4)𝑡𝐴𝐵; (2.33)

((VolS)𝑖1𝑖2𝑖3𝑖4(𝑉𝑆)𝑖1𝑖2𝑖3𝑖4 = 1, *SVolS = 1, 𝐻(0,4) = ℎVolS.)

𝐻𝑆𝐴𝑏 =
1

12
𝐻𝐴𝑖1𝑖2𝑖3𝑊

𝑖1𝑖2𝑖3
𝑏 = 3(*S𝐻(1,3))𝐴𝑏, (2.34)

𝑆𝑆 =
1

6
𝐻 𝑖1𝑖2𝑖3
𝑎 𝑊𝑏𝑖1𝑖2𝑖3 −

1

72
𝑊𝑖1𝑖2𝑖3𝑖4𝐻

𝑖1𝑖2𝑖3𝑖4𝑡𝑎𝑏. (2.35)
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Then for metric variation 𝑘 ∈ Sym2(𝑇 *𝑀)

𝐷𝑡,𝑊 (𝐹 ∘ 𝐹 )(𝑘) =

⎛⎝ 𝐻𝐻 𝐻𝑆

𝐻𝑆 𝑆𝑆

⎞⎠ ,

𝐻𝑆 =
1

144
𝑊𝑖1𝑖2𝑖3𝑖4𝑊

𝑖1𝑖2𝑖3𝑖4𝑘𝐼𝑗, (2.36)

𝐻𝐻𝐴𝐵 =
1

12

(︁ 4

12
𝐹𝑖1𝑖2𝑖3𝑖4𝐹

𝑖1𝑖2𝑖3
𝑗1

𝑡𝑗1𝑙1𝑘𝑙1𝑙2𝑡
𝑙2𝑖1𝑡𝐴𝐵 −

1

12
𝑊11𝑖2𝑖3𝑖4𝑊

𝑖1𝑖2𝑖3𝑖4𝑘𝐴𝐵

)︁
, (2.37)

𝑆𝑆𝑎𝑏 =
1

12

(︁
− 3𝑊𝑎𝑖1𝑖2𝑖3𝑊

𝑗2𝑗3
𝑏𝑗1

𝑡𝑖1𝑙1𝑘𝑙1𝑙2𝑡
𝑙2𝑗1 +

4

12
𝐹𝑖1𝑖2𝑖3𝑖4𝐹

𝑖1𝑖2𝑖3
𝑗1

𝑡𝑗1𝑙1𝑘𝑙1𝑙2𝑡
𝑙2𝑖1𝑡𝑎𝑏

− 1

12
𝑊𝑖1𝑖2𝑖3𝑖4𝑊

𝑖1𝑖2𝑖3𝑖4𝑘𝑎𝑏

)︁
, (2.38)

which using inner product 𝑊𝑖1𝑖2𝑖3𝑖4𝑊
𝑖1𝑖2𝑖3𝑖4 = ⟨𝑊,𝑊 ⟩ will give the expressions above.

Next we compute the linearization of the 2nd equation:

Lemma 2.6. The linearization of the equation

𝑑 * 𝐹 +
1

2
𝐹 ∧ 𝐹 = 0,

along the form direction and tensor direction are respectively:

𝑑𝑔0,𝐹0(𝑑 * 𝐹 +
1

2
𝐹 ∧ 𝐹 )(𝐻) = 𝑑 *𝐻 +𝐻 ∧ 𝐹, (2.39)

𝑑𝑔0,𝐹0(𝑑 * 𝐹 +
1

2
𝐹 ∧ 𝐹 )(𝑘) = 6𝑑 *H 𝑘(1,1) + 3𝑑(trH(𝑘)− trS(𝑘))VolH (2.40)

Proof. The linearization along the form direction is straight-forward, as the terms are

linear and quadratic on 𝐹 . Along the metric direction, the linearization comes from
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the Hodge star:

𝐷(*𝐹 )𝛽1𝛽2..𝛽7(𝑘)
= 𝐷( 1

4!
𝑉 𝛼1..𝛼4
𝛽1..𝛽7

𝑊𝛼1..𝛼4)(𝑘) =
1
4!
(𝛿𝑉 )𝛼1..𝛼4

𝛽1..𝛽7
𝑊𝛼1..𝛼4 +

4
4!
𝑉 𝛼2..𝛼4
𝛾1𝛽1..𝛽7

(𝛿𝑔)𝛾1𝛼1𝑊𝛼1..𝛼4

= 1
2
1
4!
𝑡𝛼𝛽𝑘𝛼𝛽𝑉

𝛼1..𝛼4
𝛽1..𝛽7

𝑊𝛼1..𝛼4 +
1
6
𝑉 𝛼2..𝛼4
𝛾1𝛽1..𝛽7

𝑡𝛾1𝜉𝑘𝜉𝜓𝑡
𝜓𝛼1𝑊𝛼1..𝛼4

= 6𝑑 *H 𝑘(1,1) + 3𝑑(trH(𝑘)− trS(𝑘))VolH
(2.41)

which gives the expressions above.

Proof of Propsition 2.3. Combining everything together, the linearized equations are

𝑑 * (6𝑑 *H 𝑘(1,1) + 3𝑑(trH(𝑘)− trS(𝑘))VolH+𝑑 *𝐻 +𝐻 ∧ Vol𝑏 𝑏𝐻) = 0

1
2
𝛥𝑟𝑜𝑢𝑔ℎ
𝑔0

𝑘 + 𝑘𝛼𝛽𝑅𝛽𝛾𝛿𝛼 +
1
2
(𝑅𝛽

𝛾𝑘𝛽𝛿 +𝑅𝛽
𝛿 𝑘𝛽𝛾) + 𝐿𝑂𝑇 = 0

(2.42)

which after arrangement gives the linearization in (2.28).

2.3.2 Indicial roots computation

Having obtained the linearized operator 𝑑𝑄, we next compute its indicial roots on the

boundary of H7, which together with its indicial kernels parametrize the boundary

values of this linear operator. Utilizing the Hodge decomposition on the 4-sphere, the

operator acts on a space of sections on H7 tensored with finite dimensional subspaces

of Γ(𝑇 *S4).

Definition 2.1 (Hodge decomposition projection). Let 𝜆 be one of the eigenvalues

for the Hodge laplacian on Γ(⊕4
𝑖=0

⋀︀𝑖(𝑇 *S4)) and define the eigenvalue projection

operator 𝜋𝜆 on the the sections of the bundle 𝑊 = Sym2(𝑒𝑇 *𝑀)⊕ 4
⋀︀

𝑒𝑇 *𝑀 to be the

projection that maps to the corresponding part on sphere.

Note here we have a collection of eigenvalues on both functions and forms.

Lemma 2.7. Sections of the bundle 𝑊 decompose according to eigenvalues 𝜆.

Proof. We identify the symmetric edge 2-tensor bundle with (Sym2(𝑒𝑇 *H7)) ⊕(𝑒𝑇 *H7

⊗𝑇 *S4)⊕ Sym2(𝑇 *S4), and decompose the 4-form bundle according to its degree on
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H7 and S4, i.e. 𝑒
⋀︀4 𝑇 *𝑀 = ⊕𝑖+𝑗=4

𝑒
⋀︀𝑖 𝑇 *H7 ⊗⋀︀𝑗 𝑇 *S4. And for each element of the

form 𝑢 ⊗ 𝑣 with 𝑢 ∈ Γ(𝑒
⋀︀* 𝑇 *H7), 𝑣 ∈ Γ(

⋀︀* 𝑇 *S4) the projection operator 𝜋𝜆 maps

it to 𝑢⊗ 𝜋𝜆𝑣, which by linearity extends to the whole bundle 𝑊 .

It follows that the operator decomposes to an infinite collection of operators, each

acting on a subbundle.

Lemma 2.8. The operator 𝑑𝑄 preserves the eigenspaces of S4, and we have the

following decomposition of the operator

𝑑𝑄 =
∑︁
𝜆≥0

𝑑𝑄𝜆 :=
∑︁
𝜆

𝜋𝜆 ∘ 𝑑𝑄 ∘ 𝜋𝜆

Proof. We only need to show that that Hodge laplacian 𝛥 commutes with the lin-

earized operator. Since the linear operator is composed from𝛥ℎ𝑜𝑑𝑔𝑒, 𝛥𝑟𝑜𝑢𝑔ℎ (which are

related by Bochner formula), Hodge * operator, differential, and scalar operator, all of

which commute with 𝛥, 𝑑𝑄 therefore commutes with the eigenvalue projections.

Now we define indicial roots and indicial kernels below for the edge operator.

Recall that 𝜕𝑀 is the total space of fibration over 𝑌 = 𝜕B7.

Definition 2.2 (Indicial operator). Let 𝐿 : Γ(𝐸1) → Γ(𝐸2) be an edge operator

between two vector bundles over 𝑀 . For any boundary point 𝑝 ∈ 𝑌 , and 𝑠 ∈ C, the

indicial operator of 𝐿 at point 𝑝 is defined as

𝐼𝑝[𝐿](𝑠) : Γ(𝐸1|𝜋−1(𝑝))→ Γ(𝐸2|𝜋−1(𝑝))

(𝐼𝑝[𝐿](𝑠))𝑣 = 𝑥−𝑠𝐿(𝑥𝑠𝑣)|𝜋−1(𝑝)

where 𝑣 is an extension of 𝑣 to a neighborhood of 𝜋−1(𝑝). The indicial roots of

𝐿 at point 𝑝 are those 𝑠 ∈ C such that 𝐼𝑝[𝐿](𝑠) has a nontrivial kernel, and the

corresponding kernels are called indicial kernels.

In the conformally compact case, the indicial operator is a bundle map from 𝐸1|𝑝
to 𝐸2|𝑝 (which is simpler than a partial differential operator as in the general edge
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ℜ(z) = 3

I II III

Figure 2-1: Indicial roots of the linearized supergravity operator on C

case). Moreover, since we have an 𝑆𝑂(7) symmetry for the operator, the indicial

roots will be constants for any boundary point 𝑝 ∈ S6.

Proposition 2.4. The indicial roots of operator 𝑑𝑄 are symmetric around Re 𝑧 = 0,

with three special pairs of roots

𝜃±1 = 3± 6𝑖, 𝜃±2 = 3± 𝑖
√
21116145/1655, 𝜃3 = 3± 𝑖3

√
582842/20098.

and all other roots lying in {‖Re 𝑧 − 3‖ ≥ 1}.

Proof. With the harmonic decomposition on sphere S4, the linearized operator 𝑑𝑄

is block-diagonalized and we compute the indicial roots for the linear system 𝑑𝑄 in

Section 2.6. We summarize the results below and Figure 2-1 is an illustration of the

indicial roots distribution. The indicial roots fall into the following three categories:

1. The roots corresponding to harmonic forms:

(a) The equation for trace-free 2-tensors on 𝐻7 arising from the first compo-

nent of (2.28) is

(𝛥𝑆 +𝛥𝐻 − 2)𝑘𝐼𝐽 = 0,

and the corresponding indicial equation is

(−𝑠2 + 6𝑠)𝑘𝐼𝐽 = 0.
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We have indicial roots

𝑆+
1 = 0, 𝑆−

1 = 6.

This corresponds to the perturbation of the hyperbolic metric to a Poincaré–

Einstein metric.

(b) The equation for trace-free 2-tensors on 𝑆4 is

𝛥𝑟𝑜𝑢𝑔ℎ
𝑆 𝑘𝑖𝑗 +𝛥𝐻𝑘𝑖𝑗 + 8𝑘𝑖𝑗 = 0

where indicial equation is

(−𝑠2 + 6𝑠+ 8)𝑘𝑖𝑗 = 0,

and the indicial roots are

𝑆±
2 = 3±

√
17.

(c) Equations for 𝐻(4,0):

𝑑𝐻 *𝐻(4,0) +𝑊 ∧𝐻(4,0) = 0

𝑑𝐻𝐻(4,0) = 0

where the indicial equation is

−(𝑠− 3)(*6𝑁) ∧ 𝑑𝑥/𝑥− 6𝑑𝑥/𝑥 ∧𝑁 = 0,

with indicial roots

𝜃±1 = 3± 6𝑖.

This corresponds to a perturbation of the 4-form on hyperbolic space.

2. The roots corresponding to functions / closed 1-forms / coclosed 3-forms /

closed 4-forms
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(a) The equations for 7𝜎 = 𝑇𝑟𝐻(𝑘), 4𝜏 = 𝑇𝑟𝑆(𝑘), 𝑘(1,1), 𝐻(1,3), 𝐻(0,4) are

6𝑑𝐻 *𝐻 𝑘𝑐𝑙(1,1) + 𝑑𝑆(3𝑇𝑟𝐻(𝑘)− 3𝑇𝑟𝑆(𝑘)) ∧ 7𝑉 + 𝑑𝑆 *𝐻𝑐𝑙
(0,4) + 𝑑𝐻 *𝐻𝑐𝑐

(1,3) = 0

𝑑𝐻𝐻
𝑐𝑙
(0,4) + 𝑑𝑆𝐻

𝑐𝑐
(1,3) = 0

𝑑𝐻𝐻
𝑐𝑐
(1,3) = 0

△𝑠𝑘
𝑐𝑙
(1,1) +△𝐻𝑘

𝑐𝑙
(1,1) + 12𝑘𝑐𝑙(1,1) − 6 *𝑆 𝐻𝑐𝑐

(1,3) = 0

𝛥𝑆𝜏 +𝛥𝐻𝜏 + 72𝜏 − 8 *𝑆 𝐻𝑐𝑙
0,4 = 0

𝛥𝑆𝜎 +𝛥𝐻𝜎 + 12𝜎 + 4 *𝑆 𝐻𝑐𝑙
0,4 − 48𝜏 = 0

The indicial equations are

𝜆4 − 4𝑆2𝜆3 + 24𝑆 * 𝜆3 − 90𝜆3 + 6𝑆4𝜆2 − 72𝑆3𝜆2

+ 342𝑆2𝜆2 − 756𝑆 * 𝜆2 + 1152𝜆2 − 4𝑆6𝜆+ 72𝑆5𝜆− 414𝑆4𝜆

+ 648𝑆3𝜆+ 1152𝑆2𝜆− 3024𝑆 * 𝜆+ 10368𝜆

+𝑆8−24𝑆7+162𝑆6+108𝑆5−6192𝑆4+31536𝑆3−33696𝑆2−155520𝑆 = 0

(2.43)

When 𝜆 = 16 there is a pair of roots with real part 3

𝑠 = 𝜃±2 = 3± 𝑖
√
21116145/1655 (2.44)

and when 𝜆 = 40 there is a pair of roots with real part 3

𝜃±3 = 3± 𝑖3
√
582842/20098

And here the five variables are related by

𝐻𝑐𝑙
(0,4) = 𝑑𝑠 *𝑠 𝑑𝑠𝜉,𝐻𝑐𝑐

(1,3) = −𝑑𝐻 *𝑠 𝑑𝑠𝜉, 𝑘𝑐𝑙(1,1) = −𝑑𝑠𝛿𝐻𝜉, 4𝜎 = 7𝜏 = 𝜉

where

𝜉 ∈ 𝛿𝑠 ∧116 𝑆4
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similarly we have another indicial kernel corresponding to 𝜃±3 with 𝜉 ∈
𝛿𝑠 ∧1

40 𝑆
4.

(b) The equations for 𝐻(3,1), 𝐻(4,0) are

𝑑𝑆 *𝐻𝑐𝑙
(3,1) + 𝑑𝐻 *𝐻𝑐𝑐

(4,0) + 64𝑉 ∧𝐻𝑐𝑐
(4,0) = 0

𝑑𝐻𝐻
𝑐𝑙
(3,1) + 𝑑𝑆𝐻

𝑐𝑐
(4,0) = 0

where the indicial equations are

(𝑠− 3)2 ± 6𝑖(𝑠− 3)− 16 = 0

with indicial roots

𝑆±
6 = 3±

√
7± 3𝑖.

3. The roots corresponding to coclosed 1-forms / closed 2-forms / coclosed 2-forms

/ closed 3-forms

(a) The equations for 𝑘(1,1), 𝐻(1,3), 𝐻(2,2) are

6𝑑𝐻 *𝐻 𝑘𝑐𝑐(1,1) + 𝑑𝐻 *𝐻𝑐𝑙
(1,3) = 0

𝑑𝑆 *𝐻𝑐𝑙
(1,3) + 𝑑𝐻 *𝐻𝑐𝑐

(2,2) + 6𝑑𝑆 *𝐻 𝑘𝑐𝑐(1,1) = 0

𝑑𝐻𝐻
𝑐𝑙
(1,3) + 𝑑𝑆𝐻

𝑐𝑐
(2,2) = 0

1
2
△𝑠𝑘

𝑐𝑐
(1,1) +

1
2
△𝐻𝑘

𝑐𝑐
(1,1) + 6𝑘𝑐𝑐(1,1) − 1

2
*𝑆 𝐻𝑐𝑙

(1,3) = 0

The indicial equation is

𝜆2− (36+ (𝑠− 1)(𝑠− 5)+ 𝑠2− 6𝑠− 1)𝜆− (𝑠− 1)(𝑠− 5)(−𝑠2+6𝑠+1) = 0.

With the smallest eigenvalue for coclosed 1-forms being 𝜆 = 24, the indicial

roots are

𝑆±
3 = 3±

√︁
±3
√
97 + 31.
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(b) The equations for 𝐻(2,2), 𝐻(3,1) are

𝑑𝑆 *𝐻𝑐𝑙
(2,2) + 𝑑𝐻 *𝐻𝑐𝑐

(3,1) = 0

𝑑𝐻𝐻
𝑐𝑙
(2,2) + 𝑑𝑆𝐻

𝑐𝑐
(3,1) = 0

The indicial equations are

(𝛥𝐻𝑜𝑑𝑔𝑒
𝑆 − (2− 𝑠)(4− 𝑠))𝐻(3,1) = 0,

and for 𝜆 = 24 we have

𝑆±
5 = 3±

√
17.

With respect to the volume form on H7 × S4, there is an inclusion of weighted

functions and forms. For Re(𝜆) > 3,

𝑥𝜆𝒞∞(𝑀 ; 𝑒
⋀︁𝑝

𝑇 *𝑀) ⊂ 𝐿2
𝑒(
𝑒
⋀︁𝑝

𝑇 *𝑀).

And this Re(𝜆) = 3 line is the 𝐿2 cutoff line.

The first thing to notice about the indicial roots results is that those indicial roots

appear in pairs symmetric to Re(𝑠) = 3, which is the 𝐿2 line. Most of the indicial

roots are bounded away from Re(𝑠) = 3, and as the sperical eigenvalues become

larger, they are bounded further. However, there are three pairs of roots that are on

the 𝐿2 line, which correponds to the kernel space.

2.3.3 Fredholm property

Now we discuss the behavior of this operator on different eigenspaces, according to

whether the pair of indicial roots appear on the 𝐿2 line or off of it. We will use the

edge calculus to deal with the large eigenvalues and the 0-calculus to deal with the

individual small eigenvalues. Specifically, we will construct two right inverses of this

operator to deal with the fact that the kernel appears when the domain becomes
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larger than 𝐿2.

We will show that for any weight 𝛿 off a discrete set of indicial roots, the operator

𝑑𝑄 acting on 𝑥𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) is Fredholm. Moreover, it is injective when 𝛿 > 1 and

surjective when 𝛿 < −1. In the range of 𝛿 ∈ (−1, 0), the kernel is finite dimensional,

characterized by the three subspaces corresponding to the three indicial roots.

First of all, we define the domain for the linearized operator:

Definition 2.3. Fix 𝛿 ∈ (0, 1), define the domain as

𝐷𝑘(𝛿) = {𝑢 ∈ 𝑥3−𝛿𝐻2,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) : (𝑑𝑄+ 𝑖𝜖)𝑢 ∈ 𝑥3+𝛿𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )}.

Using the projection operator 𝜋𝜆 above, the domain can be decomposed in terms

of the spherical harmonic decomposition on S4, as

𝐷𝑘(𝛿) = ⊕𝜆∈Λ𝐷𝑘(𝜆, 𝛿),

where Λ is the set of eigenvalues on the 4-sphere. This set is divided into the following

three subsets:

∙ Eigenvalues on functions: 4𝑘(𝑘 + 3);

∙ Eigenvalues on closed one-forms: 4(𝑘 + 1)(𝑘 + 4);

∙ Eigenvalues on coclosed one-forms: 4(𝑘 + 2)(𝑘 + 3).

We will separately discuss two parts. One part is the infinite dimensional subspace

formed by large eigenvalues

⊕𝜆>𝑀𝐷𝑘(𝜆, 𝛿),

on which the operators 𝑑𝑄 ± 𝑖𝜖 are isomorphisms, and approach two limits 𝐷± uni-

formly as 𝜖 goes to zero. This is shown by using ellipticity and a parametrix con-

struction. The other part is discussed for each small eigenvalue since there are only

finitely many. For most of the 𝜆𝑖’s, the operator has the same behavior as the "large"

part. The rest correspond to indicial roots lying on the 𝐿2 line, and we use scattering

theory to construct resolvents 𝑅± and discuss their null spaces.
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2.3.4 Large eigenvalues

Consider the bundle 𝑊 = Sym2(𝑀) ⊕ ⋀︀4(𝑀) over 𝑀 = B7 × S4 which carries a

unitary linear action of SO(5) covering the action on S4. There is an induced action

of SO(5) on 𝒞∞(B× S4;𝑊 ), which extends to all the weighted hybrid Sobolev spaces

𝑥𝑠𝐻𝑘,𝑙
e,b(B7 × S4;𝑊 ) since the group acts through diffeomorphisms. The linearized

operator 𝑑𝑄 ∈ Diff2
e(B7 × S4;𝑊 ) is an elliptic edge operator for the product edge

structure and we have shown that 𝑑𝑄 commutes with the induced action of SO(5) on

𝒞∞(B7 × S4;𝑊 ).

The Sobolev spaces of sections of 𝑊 decompose according to the irreducible rep-

resentations of SO(5), all finite dimensional and forming a discrete set. In particular

these may be labelled by the eigenvalues, 𝜆, of the Casimir operator for SO(5) with

a finite dimensional span when 𝜆 is bounded above. The SO(7, 1) action on H7 com-

mutes with the SO(5) action on 𝑊 and acts transitively on H7, so the multiplicity

of the SO(5) representation does not vary over H7. The individual representations of

SO(5) in the decomposition of 𝑊 therefore form bundles over H7. Therefore we have

the following lemma:

Lemma 2.9. The group SO(5) acts on 𝑥𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) transitively, and the bundle

decomposes to subbundles on H7.

And we are going to show the following proposition for projection off finitely many

small eigenvalues.

Proposition 2.5. There is a sifficiently large 𝑀 > 0, such that for 𝜆 > 𝑀 and any

𝜖 > 0 the two operators 𝑑𝑄𝜆 ± 𝑖𝜖 acting on 𝐷𝜆
𝑘(𝜖) are both isomorphisms. And their

inverses approaches two operators uniformly as 𝜖→ 0.

To prove this proposition, we will bundle all the large eigenvalues together.

Definition 2.4. For 𝜆 ∈ [0,∞), let 𝜋≥𝜆 : 𝑊 → 𝑊 be defined as the the projection

off the span of the eigenspaces of the Casimir operator for SO(5) with eigenvalues

smaller than 𝜆, i.e. 𝜋≥𝜆 := Id−∑︀𝜆′<𝜆 𝜋𝜆′.
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Proposition 2.6. For any weight 𝑠 ∈ R and any orders 𝑘, 𝑙, the bounded operator

defined as

𝑑𝑄 : 𝑥𝑠𝐻𝑘+𝑚,𝑙
𝑒,𝑏 (𝐻 × 𝑆;𝑊 )→ 𝑥𝑠𝐻𝑘,𝑙

𝑒,𝑏(𝐻 × 𝑆;𝑊 )

is such that 𝜋≥𝜆𝑑𝑄 is an isomorphism onto the range of 𝜋≥𝜆 for some 𝜆 ∈ [0,∞)

(depending on 𝑠 but not on 𝑘 and 𝑙). Moreover, the range of Id−𝜋≥𝜆 on 𝐶∞(H ×
S4;𝑊 ) is the space 𝐶∞(𝑀 ;⊕𝜆′<𝜆𝑊𝜆′) of sections of a smooth vector bundle over 𝑀

and 𝑑𝑄 restricts to it as an elliptic element of Diff𝑚0 (𝑀 ;⊕𝜆′<𝜆𝑊𝜆).

To prove this proposition, we first construct an SO(5)-invariant parametrix in the

small edge calculus by finding a appropriate kernel on the edge streched product space

𝑋2
𝑒 which is defined from 𝑋2 by blowing up the fiber diagonal.

Definition 2.5. The edge stretched product 𝑋2
𝑒 for an edge manifold 𝑋 is defined

as the blow up [𝑋2;𝑆] where 𝑆 is consists of all fibres of the product fibration 𝜋2 :

(𝜕𝑋)2 → 𝑌 2 which intersect the diagonal of (𝜕𝑋)2.

Notice that from the definition of fiber diagonal, the blow up actually preserves

the product structure of H7 × S4, i.e. the fibred diagonal contained in 𝑋2 is just the

product of 𝛥𝑒 × 𝑆4 × 𝑆4, and the manifold after the blow up is [(𝐻7)2; 𝜕𝛥]× (𝑆4)2.

Lemma 2.10. For 𝑀 = H7 × S4, the edge stretched product is actually a product:

𝑋2
𝑒 = [(H7)2, 𝜕Δ]× (S4)2.

The elliptic element 𝑑𝑄 is transversely elliptic to the fiber diagonal. Therefore we

have a parametrix construction in the small edge calculus as follows.

Lemma 2.11. Any SO(5)-invariant elliptic operator 𝑑𝑄 ∈ Diff𝑚𝑒 (𝑀 ;𝑊 ) has an

SO(5)-invariant parametrix 𝐸̃ in Ψ−𝑚
𝑒 (𝑀 ;𝑊 ), such that

Id−𝑑𝑄 ∘ 𝐸̃, Id−𝐸̃ ∘ 𝑑𝑄 ∈ Ψ−∞
𝑒 (𝑀 ;𝑊 )

are also SO(5)-invariant.

Proof. Any elliptic edge differential operator has a parameterix in the small edge

calculus, following Mazzeo [25]. The construction gives the kernel of 𝐸 as a classical
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conormal distribution with respect to the ‘lifted diagonal’ of the stretched edge pro-

duce 𝑀2
𝑒 . This latter manifold is constructed by blow-up of the fibre diagonal (for the

product fibtration 𝑀 = H7 × S4) over the boundary of 𝑀. In fact, globally in terms

of the product this is just the diagonal of hyperbolic space over the boundary, i.e.

𝑀2
𝑒 = (H7)20 × (S4)2

where the first space is the zero-stretched product for hyperbolic space. Thus in fact

the action of SO(5) on the kernel 𝐸, through the product action on 𝑀2, lifts smoothly

to 𝑀2
𝑒 and preserves the lifted diagonal (which is the closure of the diagonal in the

interior). So we may average under the product action and define

𝐸̃ =

∫︁
𝑔∈𝑆𝑂(5)

𝑔 · 𝐸.

Since 𝑑𝑄 is 𝑆𝑂(5) invariant by assumption (which is verified for the supergravity

operator), 𝐸̃ is also a parametrix,

𝑑𝑄 ∘ 𝐸̃ = Id+𝑅̃,

and the average remainder 𝑅̃ is also SO(5) invariant.

As a consequence, now 𝐸̃ and 𝑅̃ both commute with the spherical eigenvalue

projection 𝜋≥𝜆. The remainder 𝑅̃ can be characterized as:

Lemma 2.12. The Schwartz kernel of 𝑅̃ is in 𝐶∞((S4)2,Ψ−∞
0 (H7) ⊗ Hom(𝑊 )) ⊂

𝐶∞(𝑀2
𝑒 ,𝑊 ). In consequence it is a smooth map from (S4)2 to bounded operators on

𝑥𝑠𝐻𝑝
0 (𝐻;𝑊 ) for any 𝑠, 𝑝, with a norm depending on some 𝐶𝑘 norm for any bounded

range of 𝑠.

Proof. As an element in Ψ−∞
𝑒 (𝑀 ;𝑊 ), the Schwartz kernel 𝑅̃ is smooth on the double

edge space 𝑀2
𝑒 , with values in the bundle Hom(𝑊 )⊗𝐾 where K is the kernel density

bundle. From the properties of the small calculus, 𝑅̃ vanishes to infinite order at the

left and right boundary faces. Because 𝑀2
𝑒 has the product structure (S4)2×H2

0, the
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Schwartz kernel is in 𝐶∞((S4)2, 𝐶∞(H2
0,Hom(𝑊 )⊗𝐾)) where 𝐶∞(H2

0,Hom(W)⊗K)

is the Ψ−∞
0 (H;𝑊 )) operators acting on 𝑊 .

Consider the map from Ψ−∞
0 (𝐻;𝑊 ) to bounded operators on 𝑥𝑠𝐻𝑘

0 (H;𝑊 ): since

it is a continuous map from a Fréchet space to a normed space, the norm is bounded

by some norm on Ψ−∞
0 (H,𝑊 ), i.e. the operator norm of 𝑅̃ on 𝑥𝑠𝐻𝑘

0 (H;𝑊 ) is bounded

by a constant 𝐶(𝑠)‖𝑅̃‖𝐶𝑘(𝐻;𝑊 ). For any bounded interval 𝑠 ∈ [−𝑆, 𝑆], the bound of

‖𝑅̃‖𝑥𝑠𝐻𝑘
0 (𝐻;𝑊 ) is uniform.

We can use the following interpolation result to show that 𝜋𝜆𝑅̃ rapidly decays as

𝜆 tends to infinity.

Lemma 2.13. 𝑥𝑠𝐻𝑝,𝑘
𝑒,𝑏 (𝑀) = 𝐿2(𝑆4;𝑥𝑠𝐻𝑝

0 (𝐻)) ∩𝐻𝑝+𝑘(𝑆4;𝑥𝑠𝐿2
0(𝐻)).

Proof. We only prove the case 𝑠 = 0. If a function 𝑓 is in 𝐿2(𝑆,𝐻𝑝
0 (𝐻)), that is

𝑉 𝑝
𝑒 (𝑓) ∈ 𝐿2(𝑀), then applying an elliptic k-th order differential b-operator to 𝑓 we

obtain an element in 𝐻𝑝(𝑆4, 𝐿2(𝐻)), therefore by elliptic regularity 𝑓 ∈ 𝐻𝑝,𝑘
𝑒,𝑏 (𝑀).

Lemma 2.14. As 𝜆 tends to infinity, the bounded operators 𝜋≥𝜆𝑅̃ decay in any

Sobolev norm 𝑥𝑠𝐻𝑝,𝑙
𝑒,𝑏(𝑀 ;𝑊 ), i.e.

lim
𝜆→∞
‖𝜋≥𝜆𝑅̃‖𝑥𝑠𝐻𝑝,𝑙

𝑒,𝑏(𝐻×𝑆;𝑊 ) = 0.

Proof. Using Plancherel it follows that the Schwartz kernel of 𝜋≥𝜆𝑅̃ rapidly con-

verges to 0 in 𝐶∞((𝑆4)2, 𝑥𝑠𝐿2
0(𝐻;𝑊 )) and 𝐿2((𝑆4)2, 𝑥𝑠𝐻𝑝

0 (𝐻;𝑊 )). Then we obtain

‖𝜋≥𝜆𝑅̃‖ → 0 as bounded operators on 𝑥𝑠𝐻𝑝,𝑙
𝑒,𝑏(𝑀 ;𝑊 ) by the above lemma.

As a consequence, for any fixed 𝑠, 𝑘, 𝑙, there is a 𝜆0 such that ‖𝜋≥𝜆0𝑅̃‖𝑥𝑠𝐻𝑘,𝑙
𝑒,𝑏(𝑀 ;𝑊 ) ≤

1
2
, and this 𝜆0 only depends on some 𝐶𝑘 norm. In the case that 𝜋≥𝜆0𝑅̃ is small, we

get that 𝜋≥𝜆0𝑑𝑄𝜋≥𝜆0𝐸̃ is a perturbation of the identity, which is still an isomorphism,

that is,

Lemma 2.15. For any 𝑠, 𝑘, 𝑙, there is a 𝜆0 depending only on s, such that

𝜋≥𝜆0𝑑𝑄𝜋≥𝜆0𝐸̃ = 𝐼𝑑𝜋≥𝜆0
𝑊 + 𝜋≥𝜆0𝑅̃

57



where the right hand side is an isomorphism from 𝑥𝑠𝐻𝑘,𝑙
𝑒,𝑏(𝑀 ;𝑊 ) to itself.

Proof. The norm of the operator on the right hand side acting on 𝑥𝑠𝐻𝑘,𝑙
𝑒,𝑏(𝑀 ;𝑊 ) is

bounded from 0.

From the above lemma, we get that 𝜋≥𝜆0𝑑𝑄 is an isomorphism mapping from

𝜋≥𝜆0𝑥
𝑠𝐻𝑘,𝑙

𝑒,𝑏(𝑀 ;𝑊 ) to 𝜋≥𝜆0𝑥𝑠𝐻
𝑘−𝑚,𝑙
𝑒,𝑏 (𝑀 ;𝑊 ), proving the first part of proposition 2.6.

2.3.5 Individual eigenvalues with 𝜆 ̸= 0, 16, 40

Now we consider those eigenvalues smaller than 𝜆0. Consider the projected operator

𝜋𝜆𝑑𝑄𝜋𝜆, which is viewed as a 0-problem on the tensor bundles on H7 (tensored with

fixed eigenforms on S4). Consider the operator 𝑑𝑄 on the space 𝜋𝜆(𝑥𝛿𝐻2,𝑘
𝑒,𝑏 )(𝑀 ;𝑊 ):

computation shows that for a fixed 𝜆, except for 𝜆 = 0, 16, 40, the indicial roots of 𝑑𝑄

are contained in the range (−∞, 𝛿]∪[𝛿,∞) for some 𝛿, 𝛿, , so they are separated apart.

Moreover the indicial roots are separated further when 𝜆 is bigger. With this infor-

mation, we will show that, For 𝜆 > 40, 𝑑𝑄𝜆 : 𝜋𝜆𝑥
𝛿𝐻𝑠,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )→ 𝜋𝜆𝑥
𝛿𝐻𝑠−2,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )

is Fredholm for any 𝛿.

We consider two operator related to 𝑑𝑄𝜆: the normal operator and reduced normal

operator.

Definition 2.6 (Mazzeo, [25]). For 𝐿 ∈ Diff*
𝑒(𝑋) the normal operator 𝑁(𝐿)is defined

to be the restriction to the front face 𝐵11 of the lift of 𝐿 to 𝑋2
𝑒 . In terms of the local

coordinate, if

𝐿 =
∑︁

𝑗+|𝛼|+|𝛽|≤𝑚

𝑎𝑗,𝛼,𝛽(𝑥, 𝑦, 𝑧)(𝑥𝜕𝑥)
𝑗(𝑥𝜕𝑦)𝛼𝜕𝛽𝑧

then

𝑁(𝐿) =
∑︁

𝑗+|𝛼|+|𝛽|≤𝑚

𝑎(0, 𝑦, 𝑧)(𝑠𝜕𝑠)
𝑗(𝑠𝜕𝑢)

𝛼𝜕𝛽𝑧 ,

where 𝑠, 𝑢, 𝑥̃, 𝑦, 𝑧, 𝑧 is the lifted coordinate system on 𝑋2
𝑒 .

Here 𝑁(𝐿) acts on the product of R𝑘+1
+ × 𝐹 and is invariant under the linear

translations and dilations on the first factor. This may be further reduced to be the

reduced normal operator which is a family of differential b-operators.

58



Definition 2.7. The reduced normal operator 𝑁0(𝐿) is defined by applying the Fourier

transform in the R𝑘 direction to 𝑁(𝐿) then doing a rescaling. Specifically,

𝑁0(𝐿) =
∑︁

𝑗+|𝛼|+|𝛽|≤𝑚

𝑎𝑗,𝛼,𝛽(𝑡𝜕𝑡)
𝑗(𝑖𝑡𝜂)𝛼𝜕𝛽𝑧 , 𝑡 ∈ R+, 𝜂 ∈ 𝑆*

𝑦𝑌.

Note that in our case, we are interested in the reduced operator of 𝑑𝑄𝜆 which

is independent of the spherical variables 𝑧, and therefore is an ordinary differential

operator.

Lemma 2.16. For 𝜆 > 40, there are 𝛿 < 0 < 𝛿, such that the reduced normal operator

𝑁0(𝑑𝑄
𝜆) is an isomorphism on 𝑥𝛿𝐿2(R+

𝑠 ) for any 𝛿 < 𝛿 < 𝛿.

Proof. 𝑁0(𝑑𝑄
𝜆) has a pair of indicial roots for each 𝜆, which tend to ±∞ as 𝜆 goes

to infinity. For 𝜆 ̸= 0, 16, 40, the pair of indicial roots have different real parts and

thus can be separated. An ODE operator is not injective on 𝑥𝛿𝐿2(R+
𝑠 )when 𝛿 is less

than the bottom indicial root and not surjective when 𝛿 is bigger than the top indicial

root. Since there is a gap between the pairs of indicial roots for 𝜆 > 40, we can find

𝛿, 𝛿 such that 𝑁0(𝑑𝑄
𝜆) is an isomorphism on 𝑥𝛿𝐿2(R+

𝑠 ) for 𝛿 < 𝛿 < 𝛿.

Lemma 2.17. For 𝜆 > 40 and 𝛿 < 𝛿 < 𝛿, the normal operator 𝑁(𝑑𝑄𝜆) is Fredholm

on 𝑥𝛿𝐻𝑘
𝑏 (H7; 𝜋𝜆𝑊 ).

Proof. The reduced normal operator is obtained by Fourier transform and normal-

ization of the operator 𝑁(𝑃𝜆), so we may do an inverse Fourier transform to get back

to 𝑁 from 𝑁0.

From Mazzeo [25], there exists a parametrix 𝐺 and two projectors 𝑃𝑖, such that

the Schwartz kernels 𝑘(𝐺) and 𝑘(𝑃𝑖) all lift to distributions on 𝑋2
𝑒 polyhomogeneous

conormal at all boundary faces. The exponents in the expansions are determined by

the indicial roots.

Remark 1. On 𝑀 we have the following inclusion:

𝑥3+𝛿𝐶∞(𝑀 ;𝑊 ) ⊂ 𝑥𝛿𝐿2
𝑒(𝑀 ;𝑊 ).
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The reason why the line of indicial roots with Re(𝑠) = 3 is important is that there

is a symmetry with respect to this line which is related to the self-adjointness of the

operator.

Lemma 2.18. The kernel of the normal operator 𝑁(𝑑𝑄𝜆) on 𝑥𝛿𝐻𝑘
𝑏 (H7; 𝜋𝜆𝑊 ) is zero

for 𝛿 > 0.

Proof. This follows from the fact that there are no finite dimensional 𝐿2 eigenspaces

for functions and tensors on H7.Indeed, consider the representation of 𝑆𝑂(7, 1) on

tensor bundles on H7. There are no finite dimensional 𝐿2 invariant subspace of forms

on H7. For tensors, from Delay’s result [7], there are no 𝐿2 eigentensors.

As a result we have the following:

Lemma 2.19. For any 𝛿 > 0, the normal operator 𝑁(𝑑𝑄𝜆) is injective on 𝑥𝛿𝐻𝑘
0 (𝑀 ;

𝜋𝜆𝑊 ) and surjective on 𝑥−𝛿𝐻𝑘
0 (𝑀 ; 𝜋𝜆𝑊 ).

Proof. The kernel of this map on 𝑥𝛿𝐻𝑘
0 (𝑀 ; 𝜋𝜆𝑊 ) is contained in 𝐿2 eigenspace of

forms and tensors on H7, which from the lemma above does not have any nontrivial

elements. Therefore it is injective. By duality, it’s surjective on the bigger space

𝑥−𝛿𝐻𝑘
0 (𝑀 ; 𝜋𝜆𝑊 ).

We now return to the original operator 𝑑𝑄𝜆 and show that it is Fredholm.

Proposition 2.7. For any 𝛿 > 0, the operator 𝑑𝑄𝜆 : 𝑥3+𝛿𝐻2,𝑘
𝑒,𝑏 (𝑀 ; 𝜋𝜆𝑊 ) → 𝑥3+𝛿

𝐻0,𝑘
𝑒,𝑏 (𝑀 ; 𝜋𝜆𝑊 ) is injective. Likewise, it is surjective on 𝑥3−𝛿𝐻2,𝑘

𝑒,𝑏 (𝑀 ; 𝜋𝜆𝑊 ).

Proof. The normal operator is an isomorphism at each point of the boundary S6.

Thus for a general kernel element of 𝑑𝑄𝜆, we decompose it using 𝑆𝑂(7, 1) action, so

it falls into the kernel space of the normal operator 𝑁(𝑑𝑄𝜆) for which there is not

any. Therefore the kernel is also trivial for the operator 𝑑𝑄𝜆. So it is injective on the

smaller space, and by duality surjective on the bigger space.
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2.3.6 Individual eigenvalues with 𝜆 = 0, 16, 40

For those eigenvalues corresponding to indicial roots with real part 3, we consider each

subspace 𝜋𝜆𝑥3−𝛿𝐻2,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) separately. Restricted to these subspaces, the linearized

operator is a 0-operator on hyperbolic space, of which the main part is the hyperbolic

laplacian𝛥H. From Guillarmou [18], the resolvent of𝛥H−𝜆, denoted as 𝑅(𝜆), extends

to a meromorphic family with finite degree poles. Similarly, we want to show that 𝑑𝑄

has two generalized inverses 𝑅±, which is the extension of the resolvent (𝑑𝑄 ± 𝑖𝜖)−1

when 𝜖 approaches the real axis. More specifically, we will prove the following result

that, for 𝜆 = 0, 16, 40, 𝑑𝑄𝜆 : 𝑥−𝛿𝐻𝑠
0(H7; 𝜋𝜆𝑊 ) → 𝑥𝛿𝐻𝑠−2

0 (H7; 𝜋𝜆𝑊 ) is bounded and

has two generalized inverses.

We will be using indicial roots analysis again here, but first we will need to show

that the indicial roots may be separated from the 𝐿2 line by perturbing the operator.

Lemma 2.20. For 𝜆 = 0, 16, 40, the two indicial roots of operator 𝑑𝑄𝜆 ± 𝑖𝜖 lie off

the Re(𝑠) = 3 line.

Proof. Suppose 𝑠 ∈ C is an indicial root for an operator 𝑃 on a point 𝑝 at the

boundary, then we have 𝑃 (𝑥𝑠) = 𝑂(𝑥𝑠+1) by definition. For 𝜖 ̸= 0, the following

computation shows that 𝑠 is no longer an indicial root: (𝑃+𝑖𝜖)(𝑥𝑠) = 𝑖𝜖𝑥𝑠+𝑂(𝑥𝑠+1) /∈
𝑂(𝑥𝑠+1). Instead, take the harmonic 4-form part which has inidicial roots 3±6𝑖 which

in the indicial root computation is 𝑃 (𝑥3+𝑠) = (𝑠2+36)𝑥3+𝑠+𝑂(𝑥4), after perturbation

it becomes

(𝑃 + 𝑖𝜖)(𝑥3+𝑠) = (𝑠2 + 𝑖𝜖+ 36)𝑥3+𝑠 +𝑂(𝑥𝑠+1)

so the indicial equation becomes 𝑠2 = −𝑖𝜖− 36 which moves the two roots 3 + 𝑠± off

the line of 𝑅𝑒(𝑠) = 3. A similar argument applies to other two pairs of roots.

Lemma 2.21. For 𝜖 ̸= 0, the inverse (𝑑𝑄𝜆± 𝑖𝜖)−1 : 𝑥−𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ; 𝜋𝜆𝑊 )→ 𝑥𝛿𝐻2,𝑘

𝑒,𝑏 (𝑀 ;

𝜋𝜆𝑊 ) exists as a bounded operator.

Proof. Using the indicial roots separation and same argument as before for those

eigenvalues greater than 40, the operator 𝑑𝑄𝜆 ± 𝑖𝜖 is Fredholm on 𝑥𝛿𝐻2,𝑘
𝑒,𝑏 (𝑀 ; 𝜋𝜆𝑊 ),

injective on the smaller space and surjective on the larger space.
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We need the following limiting absorption principle:

Proposition 2.8. For small weight 0 < 𝛿 < 1, and number 𝑠, 𝑘, the operators (𝑑𝑄𝜆±
𝑖𝜖)−1 converges uniformly to bounded operators on weighted space,

lim
𝜖→0
‖(𝑑𝑄𝜆 ± 𝑖𝜖)−1 −𝑅𝜆

±‖ = 0.

where 𝑅𝜆
± : 𝑥𝛿𝐻𝑠,𝑘

𝑒,𝑏 (𝑀 ; 𝜋𝜆𝑊 )→ 𝜋𝜆𝑥
𝛿𝐻𝑠−2,𝑘

𝑒,𝑏 (𝑀 ; 𝜋𝜆𝑊 ).

Proof. To prove this, we will consider the reduced normal operator of 𝑑𝑄𝜆− 𝑖𝜖, which

is a differential operator (parametrized by 𝑦 and 𝜖), is injective from 𝑥𝛿𝐻2(R+) →
𝑥𝛿𝐿2(R+) for any fixed 𝛿. This ODE operator may be extended holomorphically as 𝜖

passes through zero from above, and the solution of the ODE extends holomorphically

as well. After extending it past zero, the smaller indicial root moves into the larger

one. 𝑑𝑄𝜆±𝑖𝜖 is injective on 𝑥3+𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀,𝑊 )→ 𝑥3+𝛿𝐻𝑠−2,𝑘

𝑒,𝑏 (𝑀,𝑊 ) (as it excludes half

the roots), and the resolvent 𝑅+ := lim𝜖→0(𝑑𝑄𝜆 − 𝑖𝜖)−1 is an right inverse. Similarly

for 𝑅−.

2.3.7 Boundary data for the linear operator

Combining the analysis for 𝜆 off the 𝐿2 line and on the 𝐿2 line, we conclude the

following for 𝑑𝑄:

Proposition 2.9. For 𝛿 ∈ (0, 1), there are two generalized inverses 𝑅± : 𝑥𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 )

→ 𝑥−𝛿𝐻𝑠+2,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) for operator 𝑑𝑄, such that

𝑃 ∘𝑅+ = 𝐼𝑑, 𝑃 ∘𝑅− = 𝐼𝑑 : 𝑥𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 )→ 𝑥𝛿𝐻𝑠,𝑘

𝑒,𝑏 (𝑀 ;𝑊 ).

As a consequence, we find the following right inverse which is real:

(𝑑𝑄)−1 :=
1

2
(𝑅+ +𝑅−).

To get the main theorem, we will parametrize the domain by the boundary data

below to get a family of operators 𝑄𝑣. To show 𝑄𝑣 is a local isomorphism, we use an
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implicit function theorem argument that, for small boundary data 𝑣, 𝑄𝑣 ∘ (𝑑𝑄0)
−1,

which acts on a fixed space independent of 𝑣, is a perturbation of the identity.

First we define three bundles on S6 that parametrize the incoming and outgoing

boundary data for the linear operator.

Definition 2.8. Let 𝑉 ±
1 to be the space of sections of the bundle of 3-forms with *𝑆

eigenvalue ±𝑖:
𝑉1 := {𝑣1 ∈ 𝐶∞(S6;

⋀︁3
𝑇 *S6) : *S6𝑣1 = 𝑖𝑣1}.

Similarly let 𝑉 ±
2 and 𝑉 ±

3 be the smooth functions on the 6-sphere tensored with eigen-

forms on 4-sphere:

𝑉2 := {𝑣2 ⊗ 𝜉16 : 𝑣2 ∈ 𝐶∞(S6;R), 𝜉16 ∈ 𝐸𝑐𝑙
16(S4)},

𝑉3 := {𝑣3 ⊗ 𝜉40 : 𝑣3 ∈ 𝐶∞(S6;R), 𝜉40 ∈ 𝐸𝑐𝑙
40(S4)}.

Remark 2. Note the dimension of the closed 1-form with the first and second eigen-

values are determined by the degree 2 and 3 spherical harmonics with 4 variables,

which, repectively, are 5 and 14 dimensional vector spaces.

To save some space we will use the following abbreviation for the leading expansion

given by the three parameters.

Definition 2.9 (Leading expansion for the linear operator). When we say the leading

expansion is given by
∑︀3

𝑖=1 𝑣
+
𝑖 𝜉𝑖, we will mean

𝐻(4,0) = 𝑣+1 𝜉1𝑥
𝜃+1 + 𝑆1(𝑣

+
1 )𝜉1𝑥

𝜃−1 +𝑂(𝑥3+𝜖)

TrH7 𝑔 = TrH7 ℎ+ 7 *𝑠 (𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

TrS4 𝑔 = TrS4 ℎ+ 4 *𝑠 (𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

𝑔(1,1) = ℎ1,1 + (𝑣+2 𝜉2𝑥
𝜃+2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

𝐻(1,3) = −𝑑𝐻(𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

𝐻(0,4) = 6VolS4 +𝑑𝑠 *𝑠 (𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

(2.45)
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Theorem 2.3. For any Poincaré–Einstein metric ℎ that is close to the background

metric 𝑔0, the solution to the linearized equations 𝑑𝑄(𝑔,𝐻) = 0 is parametrized by

the data of the three bundles ⊕𝑉𝑖.

To prove the theorem above, we will first work on hyperbolic space, and use

a perturbation argument to show that, for a nearby Poincaré–Einstein metric, the

parameter space is also transversal to the kernel. For the weight 3 − 𝛿 where 𝛿 > 0

and is small, the operator 𝑑𝑄 is surjective but not injective, and there is a null space

which corresponds to the indicial roots with real part 3.

The scattering matrix relates the incoming and outgoing data of eigenfunctions

corresponding to a point in the continuous spectrum. Once we fix the incoming data

in the expansion, the outgoing data is determined by the scattering matrix. In the

hyperbolic metric case, the scattering matrix 𝑆𝑖(𝑠), 𝑖 = 1, 2, 3 is defined for each pair

of special indicial roots.

The scattering matrix in the hyperbolic case is

𝑆𝑖(𝑠) : 𝐶
∞(𝜕H7;𝑉 +

𝑖 )→ 𝐶∞(𝜕H7;𝑉 −
𝑖 ) (2.46)

with property that if

𝑑𝑄(𝑢) = 0, 𝑢 =
3∑︁
𝑖=1

𝑓𝑖𝑥
𝜃+𝑖 + 𝑔𝑖𝑥

𝜃−𝑖 +𝑂(𝑥3+𝜖),

then

𝑔𝑖|𝜕𝑀 = 𝑆𝑖(𝑠)𝑓𝑖.

Proposition 2.10. For the base case with hyperbolic metric, the kernel of operator

𝑑𝑄 is parametrized by the sections of ⊕𝑉𝑖. More specifically, for any small incoming

real data 𝑣+ = (𝑣+1 , 𝑣
+
2 , 𝑣

+
3 ), there is a unique solution to the linearized equations with∑︀3

𝑖=1 𝜉𝑖(𝑣
+
𝑖 𝑥

𝜃+𝑖 + 𝑆𝑖(𝑣
+
𝑖 )𝑥

𝜃−𝑖 ) as the leading expansion.

Proof. We use the result of Graham–Zworski [16] and Guillarmou–Naud [19] about
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the description of scattering matrix in hyperbolic space:

𝑆(𝑠) = 2𝑛−2𝑠Γ(
𝑛
2
− 𝑠)

Γ(𝑠− 𝑛
2
)

Γ
(︁√︁

ΔS𝑛 + (𝑛−1
2
)2 + 1−𝑛

2
+ 𝑠
)︁

Γ
(︁√︁

ΔS𝑛 + (𝑛−1
2
)2 + 𝑛+1

2
− 𝑠
)︁ ,

where if we put in 𝑠 = 𝜃+1 = 3 + 6𝑖 we get

𝑆(3 + 6𝑖) = 2−12𝑖Γ(−6𝑖)
Γ(6𝑖)

Γ(
√︁
𝛥S6 +

25
4
+ 1

2
+ 6𝑖)

Γ(
√︁
𝛥S6 +

25
4
+ 1

2
− 6𝑖)

.

Since the scattering matrix is a function of the laplacian on the boundary 𝑆6 we can

take the eigenvalue expansion on 6-sphere with real eigenform 𝑓𝜆, we would consider

the following expression, which is real and forms the leading order of the actual

solution:

𝑥3+6𝑖𝑓𝜆 + 𝑥3−6𝑖𝑆(3 + 6𝑖)𝑓𝜆 = 𝑥3+6𝑖𝑓𝜆 + 𝑥3−6𝑖(2−12𝑖𝑒𝑖2𝜃𝜆6𝑖)𝑓𝜆.

Here 𝜃 is a real number determined by

𝑒2𝑖𝜃(𝜆) =
Γ(−6𝑖)
Γ(6𝑖)

Γ
(︁√︁

𝜆+ 25
4
+ 1

2
+ 6𝑖

)︁
Γ
(︁√︁

𝜆+ 25
4
+ 1

2
− 6𝑖

)︁ , (2.47)

by using the relation of

Γ(𝑧) = Γ(𝑧)

so that the right hand side of (2.47) is a complex number with norm 1 and 𝜃 is a real

number determined by 𝜆.

Rearranging the expression, the solution in the eigenvalue 𝜆 component is

𝜋𝜆𝑢 = 𝑥3+6𝑖𝑓𝜆 + 𝑥3−6𝑖2−12𝑖𝑒2𝑖𝜃𝑓𝜆 (2.48)

= 𝑥32−6𝑖𝑒𝑖𝜃
(︀
(2𝑥)6𝑖𝑒𝑖𝜃 + (2𝑥)−6𝑖𝑒𝑖𝜃

)︀
𝑓𝜆 (2.49)

= 𝑥321−6𝑖𝑒𝑖𝜃 Re
(︀
(2𝑥)6𝑖𝑒𝑖𝜃(𝜆)

)︀
𝑓𝜆 (2.50)
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which is a product of a real 3-form with complex constant 𝑥321−6𝑖𝑒𝑖𝜃. Therefore in

this case,

𝑓 = |𝑓 |𝑒𝑖𝑡, 𝑡 ∈ R,

and 𝑓 is determined by a real 3-form.

A similar computation shows that 𝜃±2 , 𝜃
±
3 are parametrized by real functions.

With the computation above, we have shown that the leading expansion of the

solution has the form

𝑢 = 𝑣±1 ∧ 𝑑𝑥/𝑥𝜉1𝑥𝜃
±
1 + 𝜉2𝑣

±
2 𝑥

𝜃±2 + 𝜉3𝑣
±
3 𝑥

𝜃±3 +𝑂(𝑥3+𝛿)

where

𝑣±𝑖 ∈ 𝑉 ±
𝑖 , 𝑣

−
𝑖 = 𝑆𝑖𝑣

+
𝑖 .

Definition 2.10. We define the Poisson operator 𝑃 for a Poincaré–Einstein metric

ℎ: if we denote the operator that maps from the space of real solutions to the incoming

boundary data (𝑣+1 , 𝑣
+
2 , 𝑣

+
3 ) by 𝑓 , then the inverse of this map is denoted by 𝑃 , which

is the Poisson operator:

𝑃 = 𝑓−1 : ⊕𝑉𝑖 → 𝐷𝑣,ℎ, {𝑣𝑖} ↦→
∑︁
𝑖,𝑠

Re(𝑣+𝑖 𝑥
3+𝑖𝑠 + 𝑆𝑖(𝑠)𝑣

+
𝑖 𝑥

3−𝑖𝑠) ∈ 𝑥3−𝛿𝐻∞
𝑏 (𝑀 ;𝑊 ).

For the hyperbolic case, it maps to the actual solution with leading expansion

(𝑣𝑖). For nearby Poincaré–Einstein metrics, it maps to a real element in the domain

which is not necesssarily an element in the null space, however it is very close to a

null element with the same leading expansion. We show below that it is transversal

to the range of right inverse 𝑅+ +𝑅−.

We also remark here that, the domain and range of this operator 𝑃 are real, and

for nearby Poincaré–Einstein metrics, the composition 𝑄 ∘ 𝑃 (𝑢) also maps into real

space.

Proposition 2.11. For the base case, the real null space of 𝑑𝑄 is the range of 𝑖(𝑅+−
𝑅−).
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Proof. This is Stone’s theorem. For any element 𝑢, 𝑑𝑄 ∘ (𝑅+ − 𝑅−)𝑢 = 0, and any

element in the kernel of 𝑑𝑄 is parametrized by 𝑢. We multiply 𝑖 to make it real since

𝑅+ −𝑅− is completely imaginary.

Lemma 2.22. For a Poincaré–Einstein metric ℎ that is closed to the background

metric 𝑔0, the range space of the sum of two generalized inverses 𝑅± is transversal to

the range of their difference: Range(𝑅+ +𝑅−) is transversal to Range(𝑅+ −𝑅−).

Proof. For the base case: the range of P is the kernel of 𝑑𝑄, which is also range of

𝑅+−𝑅−. However, the range of 𝑅+ +𝑅− doesn’t contain any element of the kernel,

since 𝑑𝑄 ∘𝑅+, 𝑑𝑄 ∘𝑅− ̸= 0.

Since transversality is stable under small perturbations, the result follows.

Then with the two lemmas above, we conclude:

Lemma 2.23. The range space of the Poisson operator 𝑃 is transversal to Range(𝑅++

𝑅−).

2.4 Nonlinear equations: application of the implicit

function theorem

From the discussion of the linear operator 𝑑𝑄 above, we now can apply the implicit

function theorem to get results for the nonlinear operator. The nonlinear terms

include two parts, one from the linearization of the curvature operator, the other

from the product type terms. We will use a perturbation argument to show that for

each Poincaré–Einstein metric, the nearby solutions are parametrized by the three

parameters on S6 as in the linear case.

To deal with the fact that the domain changes with the base metric and the

parameters we put in, we will use an implicit function theorem, that is, constructing

a map from range space to itself, and show that this map is a perturbation of identity,

therefore an isomorphism.
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2.4.1 Domain defined with parametrization

First of all we define the domain for all the product type metrics of a nearby Poincaré–

Einstein metric ℎ and each parameter set 𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ ⊕3
𝑖=1𝑉𝑖. From the discus-

sion of the generalized inverses of the linearized operator, we know that the image of
1
2
(𝑅+ +𝑅−) is transversal to the image of the Poisson operator which is close to the

kernel of the linearized operator for a nearby Poincaré–Einstein metric. In the non-

linear case, we define the domain so that, for each parameter 𝑣, it is an affine section

translated by 𝑃𝑣, where 𝑃 is the Poisson operator defined above. The domain has

the property that, in the linearized case with base hyperbolic metric, it is mapped by

𝑑𝑄 isomorphically back to the range space 𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ).

Definition 2.11. (Domain of nonlinear operator) For a Poincaré–Einstein metric ℎ

that is close to the base hyperbolic metric and a set of parameters 𝑣 = (𝑣1, 𝑣2, 𝑣3) in

bundle 𝑉 , the domain 𝐷ℎ,𝑣 of the nonlinear operator is defined as

𝐷ℎ,𝑣 :=
{︁1
2
(𝑅+ +𝑅−)𝑓 + 𝑃𝑣

⃒⃒⃒
𝑓 ∈ 𝑥𝛿𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )
}︁
.

Note that the domain depends on the choice of ℎ and 𝑣, where the dependence of

ℎ comes from the construction 1
2
(𝑅+ + 𝑅−) = (𝑑𝑄ℎ)

−1. One important property of

this domain is that 𝐷ℎ,𝑣 is mapped surjectively to the range space 𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) by

the linear operator 𝑑𝑄ℎ.

Lemma 2.24. The range space of the linear map 𝑑𝑄ℎ acting on 𝐷ℎ,𝑣 is 𝑥𝛿𝐻0,𝑘
𝑒,𝑏 .

Proof. Since all the operations are linear,

𝑑𝑄ℎ(
1

2
(𝑅+ +𝑅−)𝑓 + 𝑃𝑣) = 𝑑𝑄ℎ(𝑑𝑄ℎ)

−1𝑓 + 𝑑𝑄ℎ(𝑃𝑣) = 𝑓 +𝑂(𝑥4).

Here we used the fact that 𝑅+ and 𝑅− are both generalized inverses for 𝑑𝑄ℎ, and the

Poisson operator maps into a space with extra decay in 𝑥. Since 𝑓 can be any element

in 𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ), it follows that 𝑑𝑄ℎ maps the domain 𝐷ℎ,𝑣 onto the range.

Now with the domain we can define a nonlinear operator𝑄ℎ,𝑣 which is parametrized
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by the background Poincaré–Einstein metric ℎ and the set of parameters 𝑣, which

can be viewed as a translation of the original operator 𝑄ℎ,0.

Definition 2.12. We define the parametrized nonlinear operator 𝑄ℎ,𝑣 on domain

𝐷ℎ,𝑣:

𝑄ℎ,𝑣𝑢 := 𝑄ℎ,0(𝑢+ 𝑃𝑣)

As a translation of the original operator, the linearization of 𝑄ℎ,𝑣 at the point

(0, 0) is the same for the original nonlinear supergravity operator.

Lemma 2.25. At any boundary point on S6, the linearization of the parametrized

nonlinear operator 𝑄ℎ,𝑣 at point 𝑢 = (𝑘,𝐻) = (0, 0) equals to 𝑑𝑄0,0.

Proof. Since 𝑄ℎ,𝑣 is defined as a translation of 𝑄𝑔0,0 by 𝑃𝑣, then near the boundary

S6,

𝑑𝑄ℎ,𝑣(0, 0)𝑢 = 𝑑(𝑄ℎ,0(𝑢+ 𝑃𝑣)) = 𝑑𝑄ℎ,0𝑢+ 𝑑𝑄 ∘ 𝑃𝑣 = 𝑑𝑄𝑔0,0𝑢+𝑂(𝑥)

Therefore on any boundary point, we have the same linearization as 𝑑𝑄0,0.

Next we show that the nonlinear terms are well controlled, i.e. mapped into the

smaller space 𝑥𝛿𝐻2,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ).

Lemma 2.26. For 𝑘 sufficiently large, the product type nonlinear terms: 𝐹 ∘ 𝐹 −
𝑑(𝐹 ∘ 𝐹 ), and 𝐹

⋀︀
𝐹 − 𝑑(𝐹 ∧ 𝐹 ) are both contained in 𝑥𝛿𝐻2,𝑘

𝑒,𝑏 (𝑀 ; 𝑒 ∧4 (𝑀)).

Proof. The nonlinear parts are 𝐹 ∧ 𝐹 and 𝐹 ∘ 𝐹 which are products of two elements

in the range space 𝑥𝛿𝐻2,𝑘
𝑒,𝑏 (𝑀,𝑆2(𝑒𝑇 *𝑀)) ⊕ 𝑥𝛿𝐻1,𝑘

𝑒,𝑏 (𝑀,
⋀︀4
𝑐𝑙(

𝑒𝑇 *𝑀)). With respect to

basis of the edge bundles, these may be considered locally as functions in 𝑥𝛿𝐻2,𝑘
𝑒,𝑏 (𝑀).

Using the algebra property included in the appendix, we know that for 𝑟 > −3, and

𝑠, 𝑘, and any 𝑓, 𝑔 ∈ 𝑥𝑟𝐻𝑠,𝑘
𝑒,𝑏 (𝑀), the product 𝑓𝑔 is also in 𝑥𝑟𝐻𝑠,𝑘

𝑒,𝑏 (𝑀). Since in our

case 𝛿 > 0, the result follows.

The last nonlinear term is the remainder from the linearization of Ric, for which

we show below that it is also contained in the range space.
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Lemma 2.27. The nonlinear remainder of Ric, Ric−𝑑(Ric) is contained in 𝑥3+𝛿𝐻0,𝑘
𝑒,𝑏

(𝑀 ; Sym2(𝑇 *𝑀)).

Proof. We compute the linearization 𝑑(Ric), which acting on a 2-tensor ℎ can be

written as

𝑑(𝑅𝑖𝑐)[ℎ] =
−1
2
𝑔𝑚𝑙(∇𝑚∇𝑙ℎ𝑗𝑘 −∇𝑚∇𝑘ℎ𝑗𝑙 −∇𝑙∇𝑗ℎ𝑚𝑘 −∇𝑗∇𝑘ℎ𝑚𝑙).

Comparing Ric and 𝑑(Ric), the difference is a 3rd order polynomial of 𝑔, 𝑔−1 and first

order derivatives of these with smooth coefficients. Since the metric component 𝑔 and

𝑔−1 are smooth, hence in 𝑥0𝐻𝑠,𝑘
𝑒,𝑏 (𝑀), it follows again by the algebra property that

their product is contained in 𝑥𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ; Sym2(𝑀)).

The composed operator 𝑄ℎ,𝑣 ∘ (𝑑𝑄0,0)
−1 is this well-defined operator as a map on

the following space:

𝑄ℎ,𝑣 ∘ (𝑑𝑄0,0)
−1 : 𝑥𝛿𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )→ 𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ).

𝑓 ↦→ 𝑄ℎ,0

(︁1
2
(𝑅+ +𝑅−)𝑓 + 𝑃𝑣

)︁
We now discuss the properties of this operator using the implicit function theorem.

Lemma 2.28 (Implicit function theorem). Consider the following smooth map 𝑓 :

𝑉 ×𝑀 →𝑀 near a point (𝑣0,𝑚0) ∈ 𝑉 ×𝑀 with 𝑓(𝑣0,𝑚0) = 𝑐, if the linearization of

the map with respect to the second variable 𝑑𝑓2(𝑣0,𝑚0) :𝑀 →𝑀 is an isomorphism,

then there is neighborhood 𝑣0 ∈ 𝑈 ⊂ 𝑉 and a smooth map 𝑔 : 𝑉 → 𝑀 , such that

𝑓(𝑣, 𝑔(𝑣)) = 𝑐,∀𝑣 ∈ 𝑈 .

Theorem 2.4. For any 𝑠 ≥ 2, 𝑘 ≫ 0 there exists 𝛿 > 0, 𝜌 > 0, such that, for a

Poincaré–Einstein metric ℎ that is sufficiently close to the base metric 𝑔0, for each

small boundary value perturbation 𝑣 = ⊕3
𝑖=1𝑣

+
𝑖 with ‖𝑣‖𝐻𝑘

𝑏 (𝑀 ;⊕𝑉𝑖) < 𝜌, there is a unique

solution 𝑢 = (𝑔,𝐻) ∈ 𝐷𝑣,ℎ ⊂ 𝑥−𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) satisfying the supergravity equations
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𝑄(𝑢) = 0 with the following leading expansion

(𝑔,𝐻) = (ℎ, 6VolS4) +
3∑︁
𝑖=1

𝑣+𝑖 𝜉𝑖𝑥
𝜃𝑖 (2.51)

To prove the theorem, we will apply the implicit function theorem to the following

operator:

𝑄ℎ,𝑣 · ∘(𝑑𝑄0,0)
−1 : ⊕3

𝑖=1𝑉𝑖 × 𝑥3+𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 )→ 𝑥3+𝛿𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )

(𝑣, 𝑓) ↦→ 𝑄ℎ,𝑣 ∘ (𝑑𝑄0,0)
−1(𝑓)

This map is from a neghborhood of the Banach space 𝐻𝑘(S6,⊕𝑉𝑖)×𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) to

the Banach space 𝑥3+𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ). The following is a consequence of Lemma 2.25.

Lemma 2.29. The linearization of 𝑄ℎ,𝑣 ∘ (𝑑𝑄0,0)
−1 at point (𝑣, 𝑓) = (0, 0) ∈ ⊕𝑉𝑖 ×

𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) is an isomorphism.

Proof. From Lemma 2.25 we know that at the point (𝑣, 𝑓) = (0, 0) ∈ ⊕𝑉𝑖×𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;

𝑊 ) the linearization, which is the composition of linearization of the operators, is

𝑑(𝑄ℎ,𝑣 ∘ 𝑑𝑄0,0)
−1)(0,0) = id : 𝑥𝛿𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )→ 𝑥𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ).

Lemma 2.30. For a given metric ℎ, the map 𝑄ℎ,𝑣 ∘ (𝑑𝑄0,0)
−1 as an edge operator

varies smoothly with the parameter 𝑣 ∈ 𝑉 .

Proof. From the construction of 𝑑𝑄−1
0,0 we know it is an edge operator. And from the

discussion for 𝑄ℎ,0, this nonlinear operator is also edge. Now we we only need to

show that when the nonlinear operator 𝑄 applies to elements of type 𝑓 +𝑃𝑣, it varies

smoothly with the parameter 𝑣. This follows from the algebra property and the fact

that a second order elliptic edge operator maps from 𝐻𝑠
𝑒 (𝑀) to 𝐻𝑠−2

𝑒 (𝑀) smoothly

as shown in the appendix.

We now obtain the following, as a direct result of the implicit function theorem.
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Proposition 2.12. There are 𝜌1, 𝜌2 > 0, such that on the two neighborhoods 𝑈1 :=

{𝑣 ∈ ⊕𝑉𝑖|‖𝑣𝑖‖𝐻𝑘 < 𝜌1} and 𝑈2 := {𝑓 ∈ 𝑥3+𝛿𝐻0,𝑘
𝑒,𝑏 (𝑀 ;𝑊 )|‖𝑓‖𝑥3+𝛿𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 ) < 𝜌2},
there exists a continuous differentiable map 𝑔 : 𝑈1 → 𝑈2 such that

𝑄ℎ,𝑣 · (𝑑𝑄0,0)
−1(𝑔(𝑣)) = 0.

Proof. Now we use the implicit function theorem, we can find neighborhoods of 𝑣 = 0

and 𝑓 = 0, in this case, 𝑈1 and 𝑈2 such that the nonlinear map 𝑄ℎ,𝑣 ∘ (𝑑𝑄0,0)
−1 is a

bijective smooth map on 𝑈2 for any 𝑣 ∈ 𝑈1 . And this gives us the parametrized map

𝑔 from 𝑈1 to 𝑈2.

With the proposition above, we find a solution for each set of parameter {𝑣𝑖}.

Proof of Theorem 2.4 . Using the definition of 𝑄ℎ,𝑣 ∘ (𝑑𝑄0,0)
−1(𝑔(𝑣)) = 0 with the

map 𝑔 constructed above, we can rewrite it as

𝑄ℎ(𝑑𝑄
−1(𝑔(𝑣)) + 𝑃𝑣) = 0.

That is, for each parameter set 𝑣, 𝑢 = 𝑑𝑄−1(𝑔(𝑣)) + 𝑃𝑣 is the unique solution in the

space 𝐷𝑣,ℎ ⊂ 𝑥−𝛿𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ).

2.4.2 Regularity of the solution

Next we show that the solution obtained above is smooth if the boundary data is

smooth.

Proposition 2.13. If the boundary data 𝑣 ∈ 𝐶∞(S6,⊕𝑉𝑖), then the solution 𝑢 is in

𝐻∞
𝑏 (𝑀 ;𝑊 ).

Proof. This is done by elliptic regularity. We would like to prove that for any 𝑘,

‖𝑢‖𝐻𝑘+2
𝑏 (𝑀 ;𝑊 ) ≤ 𝐶(‖𝑣‖𝐻𝑘(𝑆6;𝑉𝑖) + ‖𝑄(𝑢)‖𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )).
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Since the principal part of 𝑄 is the elliptic edge operator ⊕𝜆𝑑𝑄𝜆 and for each 𝜆, we

have such elliptic estimates

‖𝑢𝜆‖𝐻𝑘+2
𝑏 (𝑀 ;𝑊 ) ≤ 𝐶(‖𝑣𝜆‖𝐻𝑘(𝑆6;𝑉𝑖) + ‖𝑑𝑄𝜆(𝑢)‖𝐻0,𝑘

𝑒,𝑏 (𝑀 ;𝑊 )).

The nonlinear parts are lower order:

‖𝑄−
∑︁

𝐷𝑄𝜆‖𝐻𝑘+2
𝑏 (𝑀 ;𝑊 ) < 𝐶,

leading to an elliptic estimate for 𝑄.

We can also obtain a classical expansion of the solution. The leading terms are

given by the combination of incoming and outgoing boundary data from 𝑉𝑖, and lower

order terms are solved by iteration.

Proposition 2.14. The solution has a classical polyhomogeneous expansion, with

leading term

𝑢 =
3∑︁
𝑖=1

𝑣±𝑖 𝑥𝑖𝑥
3+𝜃±𝑖 +

∑︁
𝑗≥4

∑︁
𝑣𝑗𝑥

𝑗
(︁∑︁
𝑘≤𝑗

(log 𝑥)𝑘𝑓𝑘

)︁
where 𝑣𝑗 are eigenforms, and 𝑓𝑘 ∈ 𝒞∞(𝑀,𝑊 ). For the lower order terms, the expo-

nent of the logarithmic terms grows linearly with the order.

Proof. We solve the problem iteratively. For the first order problem, from the lin-

earization and its inverse construction, we have 𝑢1 =
∑︀
𝑣±𝑖 𝑥

3±𝜃𝑖𝑥1,𝑖 with

𝑄(𝑢1) = 𝑥3+𝛿𝑒1, 𝑒1 ∈ 𝒞∞(𝑀,𝑊 ).

Then we solve away the 𝑥𝛿𝑒1 term and lower indicial roots appear here, which gives

us

𝑢2 = 𝑥3(
∑︁
𝑖

𝑣±𝑖 𝑥
3±𝜃𝑖𝑥𝑖,2 + 𝑥 log 𝑥).

The log terms appear because an order in the expansion of 𝑥𝛿𝑒 coincides with one of
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the indicial roots. Then iteratively we obtain the terms

𝑢𝑗 =
∑︁
𝑗≥4

∑︁
𝑣𝑗𝑥

𝑗(
∑︁
𝑘≤𝑗

(log 𝑥)𝑘𝑓𝑘),

where each time the power of log increases by at most one.

In terms of the explicit formulae, we may summarize the previous results as follows:

Theorem 2.5. The solution as we get from given boundary data 𝑣±𝑖 is polyhomege-

neous and has the following expansion:

𝐻(4,0) = 𝑣+1 𝜉1𝑥
𝜃+1 + 𝑆1(𝑣

+
1 )𝜉1𝑥

𝜃−1 +𝑂(𝑥3+𝜖)

TrH7 𝑔 = TrH7 ℎ+ 7 *𝑠 (𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

TrS4 𝑔 = TrS4 ℎ+ 4 *𝑠 (𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

𝑔(1,1) = ℎ1,1 + (𝑣+2 𝜉2𝑥
𝜃+2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

𝐻(1,3) = −𝑑𝐻(𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

𝐻(0,4) = 6VolS4 +𝑑𝑠 *𝑠 (𝑣+2 𝜉2𝑥𝜃
+
2 + 𝑆2(𝑣

+
2 )𝜉2𝑥

𝜃−2 + 𝑣+3 𝜉3𝑥
𝜃+3 + 𝑆3(𝑣

+
3 )𝜉3𝑥

𝜃−3 ) +𝑂(𝑥3+𝜖)

Then finally using elliptic regularity, we can extend the result to boundary data

with Sobolev regularity.

Proposition 2.15. For any 𝑘 > 0, given boundary data 𝑣𝑖 ∈ 𝐻𝑘(S6), the solutions

we get is in 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ).

Proof. This follows from the elliptic estimate

‖𝑢‖𝐻𝑠,𝑘
𝑒,𝑏 (𝑀 ;𝑊 ) ≤ 𝐶‖𝑣‖𝐻𝑘(S6;𝑉 ) + ‖𝑄(𝑢)‖𝐻𝑠−2,𝑘

𝑒,𝑏 (𝑀 ;𝑊 ).

74



2.5 Edge operators

2.5.1 Edge vector fields and edge differential operators

Proposition 2.16. 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) is a well-defined space.

Proof. It is easy to see by using the commutator relation [𝒱𝑒,𝒱𝑏] ⊂ 𝒱𝑏.

Proposition 2.17. Any m-th order edge operator P maps 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) to 𝐻𝑠−𝑚,𝑘

𝑒,𝑏 (𝑀),

for 𝑚 ≤ 𝑠.

Proof. Locally, any m-th order edge operator P can be written in the following form

𝑃 =
∑︁

𝑗+|𝛼|+|𝛽|≤𝑚

𝑎𝑗,𝛼.𝛽(𝑥, 𝑦, 𝑧)(𝑥𝜕𝑥)
𝑗(𝑥𝜕𝑦)

𝛼𝜕𝛽𝑧

If we can prove for m=1, P maps 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) to 𝐻𝑠−1,𝑘

𝑒,𝑏 (𝑀), then by induction, we

can prove for any m. Therefore we restrict to the case 𝑚 = 1.

We just need to check that, for a function 𝑢 ∈ 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀), 𝑃𝑢 satisfies

𝑉 𝑖
𝑒𝑃𝑢 ∈ 𝐻𝑘

𝑏 (𝑀), 0 ≤ 𝑖 ≤ 𝑠− 1.

The we prove the proposition by induction on k. For k=1 case, since a boundary

vector field 𝑉 ∈ 𝒱𝑏(𝑀) satisfies the commutator relation 𝑉 𝑃 = 𝑃𝑉 + [𝑉, 𝑃 ] where

the Lie bracket [𝑉, 𝑃 ] ∈ 𝒱𝑏, then

𝑉 𝑃 (𝑢) = 𝑃𝑉 (𝑢) + 𝑉𝑏(𝑢)

by definition of 𝑢 ∈ 𝐻𝑠,𝑘
𝑒,𝑏 , both 𝑉 (𝑢) and 𝑉𝑏(𝑢) are in 𝐻𝑠

𝑒 (𝑀), therefore 𝑃𝑉 (𝑢) ∈
𝐻𝑠−1
𝑒 (𝑀).

If it holds for 𝑘 − 1, then by the relation

𝑉 𝑘
𝑏 𝑃 (𝑢) = 𝑉 𝑘−1

𝑏 𝑃𝑉𝑏(𝑢) + 𝑉 𝑘
𝑏 (𝑢),

since 𝑉𝑏(𝑢) ∈ 𝐻𝑠,𝑘−1
𝑒,𝑏 and from induction assumption 𝑃𝑉𝑏(𝑢) ∈ 𝐻𝑠−1,𝑘−1

𝑒,𝑏 , therefore
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the first term 𝑉 𝑘−1
𝑏 𝑃𝑉𝑏(𝑢) ∈ 𝐻𝑠−1

𝑒 (𝑀), and the second term is in 𝐻𝑠
𝑒 by definition.

Therefore 𝑃𝑢 ∈ 𝐻𝑠−1,𝑘−1
𝑒,𝑏 , which completes the induction.

2.5.2 Hybrid Sobolev space

Proposition 2.18. For k large enough and 𝑟 ≥ −3, 𝑥𝑟𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) is an algebra.

Proof. We first prove that, for the case 𝑟 = −3, the boundary Sobolev space 𝑥−3𝐻𝑘
𝑏

is an algebra for large k. Working in the upper half plane model with coordinates

(𝑥, 𝑦1, ...𝑦𝑛, 𝑧). For any element 𝑓 ∈ 𝑥−3𝐻𝑘
𝑏 (𝑀), by definition, its Sobolev norm is

∫︁
|𝑉 𝑘
𝑏 (𝑥

3𝑓)|2𝑥−7𝑑𝑥𝑑𝑦𝑑𝑧

Since the commutator [𝑉𝑏, 𝑥3]𝑓 ⊂ {𝑥3𝑓}, therefore the definition of the Sobolev norm

is the same as ∫︁
|𝑥3(𝑉 𝑘

𝑏 𝑓)|2𝑥−7𝑑𝑥𝑑𝑦𝑑𝑧

If we do a coordinate transformation to change the problem back to R𝑛: let 𝜌 = 𝑙𝑛(𝑥),

then 𝑥𝜕𝑥 = 𝜕𝜌. Therefore under the new coordinates, the boundary vector fields are

spanned by (𝜕𝜌, 𝜕𝑦, 𝜕𝑧). Let F be the function after coordinate transformation

𝐹 (𝜌, 𝑦, 𝑧) = 𝑓(𝑒𝜌, 𝑦, 𝑧)

then from the discussion above we can see

‖𝑓‖2𝑥−3𝐻𝑘
𝑏
=

∫︁
|𝑥3(𝑉 𝑘

𝑏 𝑓)|2𝑥−7𝑑𝑥𝑑𝑦𝑑𝑧 =

∫︁
|𝑉 𝑘
𝑏 𝐹 |2𝑑𝜌𝑑𝑦𝑑𝑧 <∞

which means 𝐹 ∈ 𝐻𝑘(R𝑛). From [], the usual Sobolev space in R𝑛 is closed under

multiplication if and only if 𝑘 > 𝑛
2
. Therefore, take two elements 𝑓, 𝑔 ∈ 𝑥−3𝐻𝑘

𝑏 (𝑀),

then the corresponding functions in R𝑛 satisfy 𝐹𝐺 ∈ 𝐻𝑘(R𝑛). It follows that 𝑓𝑔 ∈
𝑥−3𝐻𝑘

𝑏 (𝑀) by taking the inverse coordinate transformation.

Then it is easy to see that 𝑥𝑟𝐻𝑘
𝑏 (𝑀) is an algebra for 𝑟 > −3. From the result
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above,
(𝑥𝑟𝐻𝑘

𝑏 ) · (𝑥𝑟𝐻𝑘
𝑏 ) = 𝑥3+𝑟(𝑥−3𝐻𝑘

𝑏 ) · 𝑥3+𝑟(𝑥−3𝐻𝑘
𝑏 )

⊂ 𝑥6+2𝑟(𝑥−3𝐻𝑘
𝑏 ) ⊂ 𝑥3+𝑟(𝑥−3𝐻𝑘

𝑏 ) = 𝑥𝑟𝐻𝑘
𝑏 (𝑀).

Now that we proved 𝐻𝑘
𝑏 (𝑀) is closed under multiplication, then we want to prove

𝐻𝑠,𝑘
𝑒,𝑏 (𝑀) is also an algebra. For any functions 𝑓, 𝑔 ∈ 𝐻𝑠,𝑘

𝑒,𝑏 (𝑀), by Leibniz rule,

𝑉 𝑗
𝑒 (𝑓𝑔) =

𝑗∑︁
𝑖=0

𝑉 𝑖
𝑒 (𝑓)𝑉

𝑗−𝑖
𝑒 (𝑔)

where by assumption, both 𝑉 𝑖
𝑒 (𝑓) and 𝑉 𝑗−𝑖

𝑒 (𝑔) are in 𝐻𝑘
𝑏 (𝑀), therefore their product

is also in 𝐻𝑘
𝑏 (𝑀) from the above result.Hence we proved 𝑉 𝑗

𝑒 (𝑓𝑔) ∈ 𝐻𝑘
𝑏 (𝑀) for 0 ≤

𝑗 ≤ 𝑠.which shows 𝑓𝑔 ∈ 𝐻𝑠,𝑘
𝑒,𝑏 (𝑀).

2.6 Computation of the indicial roots

2.6.1 Hodge decomposition

The system contains the following equations, where the (𝑖, 𝑗) notations means the

splitting of degrees of forms with respect to the product structure of B7 × S4.

∙ From the first order equation

(7, 1) :
6𝑑𝐻 *7 𝑘(1,1) + 3𝑑𝑆(𝑇𝑟𝐻7(𝑘)− 𝑇𝑟𝑆4(𝑘))

⋀︁
7𝑉

+𝑑𝑆 *𝐻(0,4) + 𝑑𝐻 *𝐻(1,3) = 0
(2.52)

(6, 2) : 𝑑𝑆 *𝐻(1,3) + 𝑑𝐻 *𝐻(2,2) + 6𝑑𝑆 *7 𝑘(1,1) = 0 (2.53)

(5, 3) : 𝑑𝑆 *𝐻(2,2) + 𝑑𝐻 *𝐻(3,1) = 0 (2.54)

(4, 4) : 𝑑𝑆 *𝐻(3,1) + 𝑑𝐻 *𝐻(4,0) +𝑊 ∧𝐻(4,0) = 0 (2.55)
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∙ From 𝑑𝐻 = 0

𝑑𝐻𝐻(0,4) + 𝑑𝑆𝐻(1,3) = 0 (2.56)

𝑑𝐻𝐻(1,3) + 𝑑𝑆𝐻(2,2) = 0 (2.57)

𝑑𝐻𝐻(2,2) + 𝑑𝑆𝐻(3,1) = 0 (2.58)

𝑑𝐻𝐻(3,1) + 𝑑𝑆𝐻(4,0) = 0 (2.59)

𝑑𝐻𝐻(4,0) = 0 (2.60)

∙ From the laplacian:

1

2
△𝑠𝑘𝐼𝑗 +

1

2
△𝐻𝑘𝐼𝑗 + 6𝑘𝐼𝑗 − 3 *𝑆 𝐻(1,3) = 0 (2.61)

1

2
(△𝑠 +△𝐻)𝑘𝐼𝐽 − 𝑘𝐼𝐽 − 6𝑇𝑟𝑆(𝑘)𝑡𝐼𝐽 + 𝑇𝑟𝐻(𝑘)𝑡𝐼𝐽 + 2𝐻(0,4)𝑡𝐼𝐽 = 0 (2.62)

1

2
(△𝑆 +△𝐻)𝑘𝑖𝑗 + 4𝑘𝑖𝑗 + 8𝑇𝑟𝑆(𝑘)𝑡𝑖𝑗 −𝐻(0,4)𝑡𝑖𝑗 = 0 (2.63)

2.6.2 Indicial roots

Then we decompose further with respect to Hodge theory on sphere, and compute

the indicial roots for each part.

∙ Harmonic functions on S4:

1. Trace-free 2-tensor on 𝐻7, where the equation is

(𝛥𝑆 +𝛥𝐻 − 2)𝑘𝐼𝐽 = 0,

and the indicial equation is

(−𝑠2 + 6𝑠)𝑘𝐼𝐽 = 0.

we have indicial roots

𝑆+
1 = 0, 𝑆−

1 = 6.
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This corresponds to the perturbation of hyperbolic metric to Poincaré–

Einstein metric.

2. Trace-free 2-tensor on 𝑆4, where the equation is

𝛥𝑟𝑜𝑢𝑔ℎ
𝑆 𝑘𝑖𝑗 +𝛥𝐻𝑘𝑖𝑗 + 8𝑘𝑖𝑗 = 0

where indicial equation is

(−𝑠2 + 6𝑠+ 8)𝑘𝑖𝑗 = 0,

indicial roots

𝑆±
2 = 3±

√
17.

3. We have

𝑑𝐻 *𝐻(4,0) +𝑊 ∧𝐻(4,0) = 0 (2.64)

𝑑𝐻𝐻(4,0) = 0 (2.65)

The second equation can be deduced from the first one. Since the indicial

operator for 𝑑𝐻 is

𝐼[𝑑](𝑠)𝑤 = (−1)𝑘(𝑠− 𝑘)𝑤 ∧ 𝑑𝑥/𝑥

Let

𝐻(4,0) = 𝑇 + 𝑑𝑥/𝑥 ∧𝑁

be the decomposition with respect to tangential and normal decomposition,

then the indicial equations are

−(𝑠− 3)(*6𝑁) ∧ 𝑑𝑥/𝑥− 6𝑑𝑥/𝑥 ∧𝑁 = 0

(𝑠− 4)𝑇 ∧ 𝑑𝑥/𝑥 = 0
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where the first equation gives

(𝑠− 3) *6 𝑁 − 6𝑁 = 0

i.e. N is an eigenform of *6 and the corresponding indicial roots are

𝑠− = 3− 6𝑖, 𝑁 ∈
3⋀︁
(S6); *6𝑁 = 𝑖𝑁 ;

𝑠+ = 3 + 6𝑖 : 𝑁 ∈
3⋀︁
(S6); *6𝑁 = −𝑖𝑁.

And plugging into the second equation, we have the vanishing of tangential

form

𝑇 = 0.

Therefore the kernel in this case is

𝐻(4,0) = 𝑑𝑥/𝑥 ∧𝑁,𝑁 ∈ {
3⋀︁
(S6), *6𝑁 = ±𝑖𝑁}.

∙ Then we consider Exact 1-form, which includes function/exact 1-form/ coexact

3-form/ exact 4-form on the eigenspace 𝜆 = 4(𝑘+1)(𝑘+4) starting from 𝑘 = 0.

1. Denote 𝜏 = 1
4
𝑇𝑟𝑆(𝑘) =

1
4
𝑡𝑖𝑗𝑘𝑖𝑗, 𝜎 = 1

7
𝑇𝑟𝐻(𝑘) =

1
7
𝑡𝐼𝐽𝑘𝐼𝐽 to be the normal-

ized trace, then we have the following equations:

6𝑑𝐻 *𝐻 𝑘𝑐𝑙(1,1) + 𝑑𝑆(3𝑇𝑟𝐻(𝑘)− 3𝑇𝑟𝑆(𝑘))
⋀︁

7𝑉

+𝑑𝑆 *𝐻𝑐𝑙
(0,4) + 𝑑𝐻 *𝐻𝑐𝑐

(1,3) = 0
(2.66)

𝑑𝐻𝐻
𝑐𝑙
(0,4) + 𝑑𝑆𝐻

𝑐𝑐
(1,3) = 0 (2.67)

𝑑𝐻𝐻
𝑐𝑐
(1,3) = 0 (2.68)

△𝑠𝑘
𝑐𝑙
(1,1) +△𝐻𝑘

𝑐𝑙
(1,1) + 12𝑘𝑐𝑙(1,1) − 6 *𝑆 𝐻𝑐𝑐

(1,3) = 0 (2.69)

𝛥𝑆𝜏 +𝛥𝐻𝜏 + 72𝜏 − 8 *𝑆 𝐻𝑐𝑙
0,4 = 0 (2.70)
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𝛥𝑆𝜎 +𝛥𝐻𝜎 + 12𝜎 + 4 *𝑆 𝐻𝑐𝑙
0,4 − 48𝜏 = 0 (2.71)

First note that 2.68 can be derived from 2.67. Let 𝐻𝑐𝑙
(0,4) = 𝑑𝑆𝜂, here 𝜂 is a

(0,3)-form. Then 𝐻𝑐𝑐
(1,3) = −𝑑𝐻𝜂 by 2.68. Let 𝑓 = *𝑆𝑑𝑆𝜂. Let 𝑘𝑐𝑙(1,1) = 𝑑𝑆𝑤,

w is (1,0)-form. Put it back to 2.66 we get

6𝑑𝐻 *𝐻 𝑑𝑆𝑤+ 𝑑𝑆 *𝐻 (21𝜎− 12𝜏)+ *𝐻𝑑𝑆 *𝑆 𝑑𝑆𝜂−*𝑆𝑑𝐻 *𝐻 𝑑𝐻𝜂 = 0 (2.72)

Apply *𝐻 (*2𝐻 = 1), we get

6 *𝐻 𝑑𝐻 *𝐻 𝑑𝑆𝑤 + 𝑑𝑆(21𝜎 − 12𝜏) + 𝑑𝑆 *𝑆 𝑑𝑆𝜂 − *𝑆 *𝐻 𝑑𝐻 *𝐻 𝑑𝐻𝜂 = 0

Then let 𝜂 = *𝑆𝑑𝑆𝜉, 𝜉 be a function, and pull out 𝑑𝑆

−6𝛿𝐻𝑤 + (21𝜎 − 12𝜏)−𝛥𝑆𝜉 −𝛥𝐻𝜉 = 0 (2.73)

and put the expression to 2.69,

𝛥𝑆𝑑𝑆𝑤 +𝛥𝐻𝑑𝑆𝑤 + 12𝑑𝑆𝑤 + 6 *𝑆 𝑑𝐻 *𝑆 𝑑𝑆𝜉 = 0

Apply 𝛿𝐻 and pull out 𝑑𝑆

𝛥𝑆𝛿𝐻𝑤 +𝛥𝐻𝛿𝐻𝑤 ++12𝛿𝐻𝑤 + 6𝛥𝐻𝜉 = 0 (2.74)

Now 2.70 becomes

𝛥𝑆𝜏 +𝛥𝐻𝜏 + 72𝜏 + 8𝛥𝑆𝜉 = 0 (2.75)

And 2.71 is

𝛥𝑆𝜎 +𝛥𝐻𝜎 + 12𝜎 − 4𝛥𝑆𝜉 − 48𝜏 = 0 (2.76)

Putting the above four equations together, and suppose the eigenvalue of

81



𝛥𝑆 is 𝜆, we get⎛⎜⎜⎜⎜⎜⎜⎝
12 + 𝜆+𝛥𝐻 −48 −4𝜆 0

0 72 + 𝜆+𝛥𝐻 8𝜆 0

21 −12 −𝜆−𝛥𝐻 −6
0 0 6𝛥𝐻 12 + 𝜆+𝛥𝐻

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝜎

𝜏

𝜉

𝛿𝐻𝑤

⎞⎟⎟⎟⎟⎟⎟⎠ = 0

The determinant, after putting in the indicial operator of 𝛥𝐻 , is

𝜆4 − 4𝑆2𝜆3 + 24𝑆 * 𝜆3 − 90𝜆3 + 6𝑆4𝜆2 − 72𝑆3𝜆2

+ 342𝑆2𝜆2 − 756𝑆 * 𝜆2 + 1152𝜆2 − 4𝑆6𝜆+ 72𝑆5𝜆− 414𝑆4𝜆

+ 648𝑆3𝜆+ 1152𝑆2𝜆− 3024𝑆 * 𝜆+ 10368𝜆

+ 𝑆8 − 24𝑆7 + 162𝑆6 + 108𝑆5 − 6192𝑆4

+ 31536𝑆3 − 33696𝑆2 − 155520𝑆 = 0

(2.77)

Putting the lowest two eigenvalues for closed 1-form, we get the following

two pairs of roots: for 𝜆 = 16 the indicial roots are 𝜃2 = 3±𝑖
√
21116145/1655.

with kernel

𝜉16 ∈
𝑐𝑙⋀︁

𝜆=16

(𝑆)

which is the closed 1-form on 4-sphere with eigenvalue 16. and the other

pair is for 𝜆 = 40 then

𝜃3 = 3± 𝑖3
√
582842/20098,

with kernel

𝜉40 ∈
𝑐𝑙⋀︁

𝜆=40

(𝑆).

2. We have

𝑑𝑆 *𝐻𝑐𝑙
(3,1) + 𝑑𝐻 *𝐻𝑐𝑐

(4,0) + 64𝑉 ∧𝐻𝑐𝑐
(4,0) = 0, (2.78)

𝑑𝐻𝐻
𝑐𝑙
(3,1) + 𝑑𝑆𝐻

𝑐𝑐
(4,0) = 0. (2.79)
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Let

𝐻𝑐𝑙
(3,1) = 𝑑𝑆𝜂

where 𝜂 is (3,0), put into second equation to get

𝐻𝑐𝑐
(4,0) = −𝑑𝐻𝜂

Put everything back to first equation, we get

𝑑𝑆 * 𝑑𝑆𝜂 − 𝑑𝐻 * 𝑑𝐻𝜂 − 64𝑉 ∧ 𝑑𝐻𝜂 = 0.

Apply *𝑆, and note *2𝑆 = (−1)𝑘(4−𝑘) = 1, 𝛿𝑆 = (−1)4(𝑘+1)+1 *𝑆 𝑑𝑆*𝑆 =

− *𝑆 𝑑𝑆*𝑆, 𝛥𝑆 = 𝑑𝛿 + 𝛿𝑑,

*𝐻(−𝛿𝑆)𝑑𝑆𝜂 − 𝑑𝐻 *𝐻 𝑑𝐻𝜂 + 𝑑𝐻𝜂 = 0

Then apply *𝐻 , note (*𝐻)2 = 1, get

−𝛥𝑆𝜂 − *𝐻𝑑𝐻 *𝐻 𝑑𝐻𝜂 + 6 *𝐻 𝑑𝐻𝜂 = 0.

Let 𝛥𝑆𝜂 = 𝜆𝜂

−𝜆𝜂 −𝛥𝐻𝜂 + 6 *𝐻 𝑑𝐻𝜂 = 0

The indicial equation: using 𝐼[𝑑](𝑠)𝑤 = (−1)𝑘(𝑠− 𝑘)𝑤 ∧ 𝑑𝑥
𝑥

,

−𝜆𝜂 + (𝑠− 3)2𝜂 + 6(𝑠− 3) *6 𝜂 = 0

that is

(𝑠− 3)2 ± 6𝑖(𝑠− 3)− 16 = 0

with roots

𝑠 = 3±
√
7± 3𝑖.

∙ Then we consider the co-exact 1-form, which contains coexact 1-form/ exact
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2-form/ coexact 2-form/ exact 3-form for 𝜆 = 4(𝑘 + 2)(𝑘 + 3) starting from

𝑘 = 0.

1. We have

6𝑑𝐻 *𝐻 𝑘𝑐𝑐(1,1) + 𝑑𝐻 *𝐻𝑐𝑙
(1,3) = 0 (2.80)

𝑑𝑆 *𝐻𝑐𝑙
(1,3) + 𝑑𝐻 *𝐻𝑐𝑐

(2,2) + 6𝑑𝑆 *𝐻 𝑘𝑐𝑐(1,1) = 0 (2.81)

𝑑𝐻𝐻
𝑐𝑙
(1,3) + 𝑑𝑆𝐻

𝑐𝑐
(2,2) = 0 (2.82)

1

2
△𝑠𝑘

𝑐𝑐
(1,1) +

1

2
△𝐻𝑘

𝑐𝑐
(1,1) + 6𝑘𝑐𝑐(1,1) −

1

2
*𝑆 𝐻𝑐𝑙

(1,3) = 0 (2.83)

First note that (2.80) can be derived from (2.81) Let 𝐻𝑐𝑙
(1,3) = 𝑑𝑠𝜂, where 𝜂

is (1,2)-form. Then 𝐻𝑐𝑐
2,2 = −𝑑𝐻𝜂 from (2.82). Put it to (2.81), 𝑑𝑆 * 𝑑𝑆𝜂 −

𝑑𝐻 *𝑑𝐻𝜂+6𝑑𝑆 *𝐻 𝑘𝑐𝑐1,1 = 0. Apply *𝑆, *𝐻 , get −𝛥𝑆𝜂−𝛥𝐻𝜂+6*𝑆 𝑑𝑆𝑘𝑐𝑐(1,1) =
0. Apply *𝑆𝑑𝑆 again, get −𝛥𝑆(*𝑆𝑑𝑆𝜂) − 𝛥𝐻(*𝑆𝑑𝑆𝜂) − 6𝛥𝑆𝑘

𝑐𝑐
(1,1) = 0.

Combining with (2.83), and let 𝜆 be the eigenvalue for 𝛥𝑆 on coclosed

1-form, we get⎛⎝ −𝜆−𝛥𝐻 −6𝜆
−1 𝜆+𝛥𝐻 + 12

⎞⎠⎛⎝ *𝑆𝑑𝑆𝜂
𝑘𝑐𝑐(1,1)

⎞⎠ = 0

The indicial equation is

𝜆2− (36+ (𝑠− 1)(𝑠− 5)+ 𝑠2− 6𝑠− 1)𝜆− (𝑠− 1)(𝑠− 5)(−𝑠2+6𝑠+1) = 0.

With smallest eigenvalue for coclosed 1-form to be 𝜆 = 24, indicial roots

are

𝑆±
3 = 3±

√︁
±3
√
97 + 31

2.

𝑑𝑆 *𝐻𝑐𝑙
(2,2) + 𝑑𝐻 *𝐻𝑐𝑐

(3,1) = 0 (2.84)

𝑑𝐻𝐻
𝑐𝑙
(2,2) + 𝑑𝑆𝐻

𝑐𝑐
(3,1) = 0 (2.85)
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Apply 𝑑𝐻 and 𝑑𝑆 to the equations, we have

𝑑𝐻𝑑𝑆 *𝐻𝑐𝑙
(2,2) = 0, 𝑑𝑆𝑑𝐻𝐻

𝑐𝑙
(2,2) = 0 (2.86)

let 𝐻𝑐𝑙
(2,2) = 𝑑𝑆𝜂 where 𝜂 is a coclosed (2,1)-form, Putting it back, and

using 𝑑𝑆 is an isomorphism, 𝑑𝐻𝜂 = −𝐻𝑐𝑐
(3,1). Then from first equation,

𝑑𝑆 * 𝑑𝑆𝜂 − 𝑑𝐻 * 𝑑𝐻𝜂 = 0, which is − *𝐻 *𝑆𝛥𝑆𝜂 − *𝑆 *𝐻 𝛥𝐻𝜂 = 0 then it

requires 𝛥𝐻𝜂 = −𝜆𝜂. Putting 𝜆 = 4(𝑘 + 2)(𝑘 + 3), the result is

𝑠 = 3±
√
17.
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Chapter 3

Resolution of the canonical fiber

metrics for a Lefschetz fibration

In the setting of complex surfaces, a Lefschetz fibration is a holomorphic map to a

curve, generalizing an elliptic fibration in that it has only a finite number of singular

points near which it is holomorphically reducible to normal crossing. Donaldson [8]

showed that a four-dimensional simply-connected compact symplectic manifold, pos-

sibly after stabilization by a finite number of blow-ups, admits a Lefschetz fibration, in

an appropriately generalized sense, over the sphere; Gompf [13] showed the converse.

The reader is referred to the book of Gompf and Stipsicz [14] for a description of the

important role played by Lefschetz fibrations in the general theory of 4-manifolds.

To cover these cases we consider a compact connected almost-complex 4-manifold

𝑀 and a smooth map, with complex fibers, to a Riemann surface 𝑍

𝑀
𝜓 // 𝑍. (3.1)

We then require that this map be pseudo-holomorphic, have surjective differential

outside a finite set 𝐹 ⊂ 𝑀, on which 𝜓 is injective, so 𝜓 : 𝐹 ←→ 𝑆 ⊂ 𝑀, and near

each of these singular points be reducible to the normal crossing, or plumbing variety,

model (3.2) below.

A curve of genus 𝑔 with 𝑏 punctures is stable if its automorphism group is finite,
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which is the case when 3𝑔−3+𝑏 > 0. In this paper we discuss Lefschetz fibrations with

regular fibers having genus 𝑔 > 1 and hence stable. All fibers carry a unique metric

of curvature −1, for the singular fibers with cusp points replacing the nodes. In view

of uniqueness and stability, these metrics necessarily vary smoothly near a regular

fiber. We discuss here the precise uniform behavior of this family of metrics near

the singular fibers, showing that in terms of appropriate (logarithmic) resolutions, of

both the total and parameter spaces, to manifolds with corners the resulting fiber

metric is polyhomogeneous and more particularly log-smooth, i.e. essentially smooth

except for the appearance of logarithmic terms in the expansions at boundary surfaces.

This refines a result of Obitsu and Wolpert [39] who gave the first two terms in

the expansion. In a forthcoming paper the universal case of the Deligne-Mumford

compactification of the moduli space of Riemann surfaces, also treated by Obitsu and

Wolpert, will be discussed.

The local model for degeneration for the complex structure on a Riemann surface

to a surface with a node is the ‘plumbing variety’ with its projection to the parameter

space. We add boundaries, away from the singularity at the origin, to make this into

a manifold with corners:

𝑃 =
{︁
(𝑧, 𝑤) ∈ C2; ∃ 𝑡 ∈ C, 𝑧𝑤 = 𝑡, |𝑧| ≤ 3

4
, |𝑤| ≤ 3

4
, |𝑡| ≤ 1

2

}︁
𝑃

𝜑−→ D 1
2
=
{︁
𝑡 ∈ C; |𝑡| ≤ 1

2

}︁
.

(3.2)

Thus near each point of 𝐹 we require that 𝜓 can be reduced to 𝜑 in (almost) holo-

morphic coordinates in 𝑀 and 𝑍.

A (real) manifold with corners𝑀 has a principal ideal ℐ𝐹 ⊂ 𝒞∞(𝑀) corresponding

to each boundary hypersurface (by assumption embedded and connected) generated

by a boundary defining function 𝜌𝐹 ≥ 0 with 𝐹 = {𝜌𝐹 = 0} and 𝑑𝜌𝐹 ̸= 0 on

𝐹. A smooth map between manifolds with corners 𝑓 : 𝑀 −→ 𝑌 is an interior b-

map if each of these ideals on 𝑌 pulls back to non-trivial finite products of the

corresponding ideals on 𝑀, it is b-normal if there is no common factor in these

product decompositions – this is always the case here since the range space is a
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manifold with boundary. Such a map is a b-fibration if in addition every smooth

vector field tangent to all boundaries on 𝑌 is locally (and hence globally) 𝑓 -related to

such a vector field on 𝑀 ; it is then surjective. There is a slightly weaker notion than

a manifold with corners, a tied manifold, which has the same local structure but in

which the boundary hypersurfaces need not be embedded, meaning that transversal

self-intersection is allowed. This arises below, although not in any essential way.

There is still a principal ideal associated to each boundary hypersurface and the

notions above carry over.

The assumptions above mean that each singular fiber of 𝜓 has one singular point

at which it has a normal crossing in the (almost) complex sense as a subvariety of 𝑀.

The first step in the resolution is the blow up, in the real sense, of the singular fibers;

this is well-defined in view of the transversality of the self-instersection but results

in a tied manifold since the boundary faces are not globally embedded. The second

step is to replace the 𝒞∞ structure by its logarithmic weakening, i.e. replacing each

(local) boundary defining function 𝑥 by

ilog 𝑥 = (log 𝑥−1)−1.

This gives a new tied manifold mapping smoothly to the previous one by a homeo-

morphism. These two steps can be thought of in combination as the ‘logarithmic blow

up’ of the singular fibers. The final step is to blow up the corners, of codimension

two, in the preimages of the singular fibers. This results in a manifold with corners,

𝑀mr, with the two boundary hypersurfaces denoted 𝐵I, resolving the singular fiber,

and 𝐵II arising at the final stage of the resolution. The parameter space 𝑍 is similarly

resolved to a manifold with corners by the logarithmic blow up of each of the singular

points.

It is shown below that the Lefschetz fibration lifts to a smooth map

𝑀mr
𝜓mr // 𝑍mr (3.3)

which is a b-fibration. In particular it follows from this that smooth vector fields on

89



𝑀mr which are tangent to all boundaries and to the fibers of 𝜓mr form the sections

of a smooth vector subbundle of b𝑇𝑀mr of rank two. The boundary hypersurface 𝐵II

has a preferred class of boundary defining functions, an element of which is denoted

𝜌II, arising from the logarithmic nature of the resolution, and this allows a Lie algebra

of vector fields to be defined by

𝑉 ∈ 𝒞∞(𝑀mr;
b𝑇𝑀mr), 𝑉 𝜓

*𝒞∞(𝑍mr) = 0, 𝑉 𝜌II ∈ 𝜌2II𝒞∞(𝑀mr). (3.4)

The possibly singular vector fields of the form 𝜌−1
II 𝑉, with 𝑉 as in (3.4), also form all

the sections of a smooth vector bundle, denoted 𝐿𝑇𝑀mr. This vector bundle inherits

a complex structure and hence has a smooth Hermitian metric, which is unique up

to a positive smooth conformal factor on 𝑀mr. The main result of this paper is:

Theorem 3.1. The fiber metrics of fixed constant curvature on a Lefschetz fibration,

in the sense discussed above, extend to a continuous Hermitian metric on 𝐿𝑇𝑀mr

which is related to a smooth Hermitian metric on this complex line bundle by a log-

smooth conformal factor.

The notion of log-smoothness here, for a function, is the same as polyhomogeneous

conormality with non-negative integral powers and linear multiplicity of slope one.

Conormality in this context for 𝑓 : 𝑀mr −→ R can be interpreted as the ‘symbol

estimates’ that

𝑓 ∈ 𝒜(𝑀mr)⇐⇒ Diff*
b(𝑀mr)𝑓 ⊂ 𝐿∞(𝑀mr) (3.5)

which in fact implies that the space of these functions is stable under the action,

Diff*
b(𝑀mr)𝒜(𝑀mr) ⊂ 𝒜(𝑀mr). Polyhomogeneity means the existence of appropriate

expansions at the boundary. On a manifold with boundary, 𝑀, log-smoothness of a

conormal function 𝑓 ∈ 𝒜(𝑀) means the existence of an expansion at the boundary,

generalizing the Taylor series of a smooth function, so for any product decomposition

near the boundary with boundary defining function 𝑥, there exist coefficients 𝑎𝑗,𝑘 ∈
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𝒞∞(𝜕𝑀), 𝑗 ≥ 0, 𝑗 ≥ 𝑘 ≥ 0 such that for any finite 𝑁,

𝑓 −
∑︁

𝑗≤𝑁,0≤𝑘≤𝑗

𝑎𝑗,𝑘𝑥
𝑗(log 𝑥)𝑘 ∈ 𝑥𝑁𝒜([0, 1)× 𝜕𝑀), ∀ 𝑁. (3.6)

We denote the linear space of such functions 𝒞∞log(𝑀), it is independent of choices.

In the case of a manifold with corners the definition may be extended by iteration

of boundary codimension. Thus 𝑓 ∈ 𝒞∞log(𝑀mr) if for any product decompositions of

𝑀mr near the two boundaries there are corresponding coefficients 𝑎𝑗,𝑘,𝑏 ∈ 𝒞∞log(𝐵𝑏),

𝑏 = I, II, such that

𝑓 −
∑︁

𝑗≤𝑁,0≤𝑘≤𝑗

𝑎𝑗,𝑘,𝑏𝑥
𝑗
𝑏(log 𝑥𝑏)

𝑘 ∈ 𝑥𝑁𝑏 𝒜([0, 1)×𝐵𝑏), 𝑏 = I, II, ∀ 𝑁. (3.7)

There are necessarily compatibility conditions between the two expansions at the

corners, 𝐵I ∩ 𝐵II, and together they determine 𝑓 up to a smooth function on 𝑀mr

vanishing to infinite order on both boundaries. In this sense the conformal factor in

the main result above is ‘essentially smooth’.

In the model setting, (3.2), there is an explicit family of fiber metrics, the ‘plumb-

ing metric’, of curvature −1,

𝑔𝑃 =
(︁𝜋 log |𝑧|

log |𝑡| csc
𝜋 log |𝑧|
log |𝑡|

)︁2
𝑑𝑠20,

𝑔0 =
(︁ |𝑑𝑧|
|𝑧| log |𝑧|

)︁2
.

(3.8)

This metric can be extended (‘grafted’ as in [39]) to give an Hermitian metric on
𝐿𝑇𝑀mr which has curvature 𝑅 equal to −1 near 𝐵II and to second order at 𝐵I. We

prove the Theorem above by constructing the conformal factor 𝑒2𝑓 for this metric

which satisfies the curvature equation, ensuring that the new metric has curvature

−1 :

(𝛥+ 2)𝑓 + (𝑅 + 1) = −𝑒2𝑓 + 1 + 2𝑓 = 𝑂(𝑓 2). (3.9)

This equation is first solved in the sense of formal power series (with logarithms)
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at both boundaries, 𝐵I and 𝐵II, which gives us an approximate solution 𝑓0 with

−𝛥𝑓0 = 𝑅 + 𝑒2𝑓0 + 𝑔, 𝑔 ∈ 𝑠∞𝑡 𝒞∞(𝑀mr).

Then a solution 𝑓 = 𝑓0 + 𝑓 to (3.9) amounts to solving

𝑓 = −(𝛥+ 2)−1
(︁
2𝑓(𝑒2𝑓0 − 1) + 𝑒2𝑓0(𝑒2𝑓 − 1− 2𝑓)− 𝑔

)︁
= 𝐾(𝑓).

Here the non-linear operator 𝐾 is at least quadratic in 𝑓 and the boundedness of

(𝛥 + 2)−1 on 𝜌
− 1

2
II 𝐻

𝑀
b (𝑀mr) for all 𝑀 allow the Inverse Function Theorem to be

applied to show that 𝑓 ∈ 𝑠∞𝑡 𝒞∞(𝑀mr) and hence that 𝑓 itself is log-smooth.

In §3.1 the model space and metric are analysed and in §3.2 the global resolution

is described and the proof of the Theorem above is outlined. The linearized model

involves the inverse of 𝛥+2 for the Laplacian on the fibers and the uniform behavior,

at the singular fibers, of this operator is explained in §3.3. The solution of the curva-

ture problem in formal power series is discussed in §3.4 and using this the regularity

of the fiber metric is shown in §3.5.

3.1 The plumbing model

We start with a description of the real resolution of the plumbing variety, given

in (3.2), and the properties of the fiber metric, (3.8), on the resolved space. As

noted above there are three steps in this resoluton, first the fiber complex structure

is resolved, in a real sense, then two further steps are required to resolve the fiber

metric.

The plumbing variety itself is smooth with 𝑧 and 𝑤 global complex coordinates

– it is the model singular fibration 𝜑 which is to be ‘resolved’ in the real sense. The

fibers above each 𝑡 ̸= 0 are annuli

{|𝑡| ≤ |𝑧| ≤ 3
4
} 𝑤=𝑡/𝑧// {|𝑡| ≤ |𝑤| ≤ 3

4
} (3.10)
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whereas the singular fiber above 𝑡 = 0 is the union of the two discs at 𝑧 = 0 and

𝑤 = 0 identified at their origins

𝜑−1(0) =
{︁
|𝑧| ≤ 3

4

}︁
∪
{︁
|𝑤| ≤ 3

4

}︁
/({𝑧 = 0} ∼ {𝑤 = 0}). (3.11)

Note that the differential of 𝜑 vanishes at the singular point 𝑧 = 𝑤 = 0 so any smooth

vector field on the range which lifts under it, i.e. is 𝜑-related to a smooth vector field

on 𝑃, vanishes at 𝑡 = 0. Conversely, 𝑡𝜕𝑡 is 𝜑-related to both 𝑧𝜕𝑧 and 𝑤𝜕𝑤 whereas the

vector field

𝑉 = 𝑧𝜕𝑧 − 𝑤𝜕𝑤 (3.12)

annihilates 𝜑*𝑡 and so is everywhere tangent to the fibers of 𝜑.

The first step in the resolution of 𝜑 : 𝑃 −→ D 1
2

consists in passing to the commu-

tative square

𝑃𝜕
𝜑𝜕 //

��

[D 1
2
, 0]

��
𝑃

𝜑
// D 1

2
.

(3.13)

Here [D 1
2
, 0] is the space obtained by real blow up of the origin in the disk, which can

be realized globally as

[D 1
2
, 0] ≃

[︁
0,

1

2

]︁
× S ∋ (𝑟, 𝜃) ↦−→ 𝑡 = 𝑟𝑒𝑖𝜃 ∈ D 1

2
(3.14)

if S = R/2𝜋Z. As a real blow-up [D 1
2
, 0] is a well-defined manifold with boundary

and any diffeomorphism of D 1
2

fixing the origin lifts to a global diffeomorphism. The

complex structure on D 1
2

lifts to a complex structure on b𝑇 [D 1
2
, 0] generated by 𝑡𝜕𝑡 =

𝑟𝜕𝑟 + 𝑖𝜕𝜃 in terms of (3.14).

Proposition 3.1. The space

𝑃𝜕 = [𝑃 ; {𝑧 = 0} ∪ {𝑤 = 0}], (3.15)

obtained by the real blow-up of the two normally-intersecting divisors forming the
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singular fiber of 𝜑, gives a commutative diagram (3.13) in which 𝜑𝜕 is a b-fibration

with

𝜑*
𝜕
ℐ𝜕 = ℐI,LℐI,R (3.16)

where ℐI,L and ℐI,R correspond to the two boundary components introduced by the

blow-up, forming the proper tranforms of 𝑧 = 0 and 𝑤 = 0 respectively.

Proof. The two divisors forming the singular fiber 𝜑−1(0) are each contained in a

product product neighborhood D 1
2
×D 3

4
⊂ 𝑃 and D 3

4
×D 1

2
⊂ 𝑃. The transversality of

their intersection is clear and it follows that the blow-up is well-defined independently

of order with the new front faces being

𝐵I,L = S× [D 3
4
, {0}] ⊂ 𝑃𝜕, 𝐵I,R = [D 3

4
, {0}]× S ⊂ 𝑃𝜕. (3.17)

Here each of the blown up disks corresponds to the introduction of polar coordinates,

so 𝑟𝑧 = |𝑧| is a defining function (globally) for 𝐵I,L and 𝑟𝑤 = |𝑤| for 𝐵I,R. Since

𝑟𝑡 = |𝑡| is a defining function for the blown-up disk in the range and

𝑟𝑡 = 𝑟𝑧𝑟𝑤 (3.18)

the b-fibration condition follows from the behaviour of the corresponding angular

variables

𝑒𝑖𝜃𝑡 = 𝑒𝑖𝜃𝑧𝑒𝑖𝜃𝑤 . (3.19)

As a compact manifold with corners, 𝑃𝜕 is globally the product of an embedded

manifold in R2 and a 2-torus

𝑃𝜕 =
{︁
(𝑟𝑧, 𝑟𝑤)

⃒⃒⃒
0 ≤ 𝑟𝑧, 𝑟𝑤 ≤

3

4
, 𝑟𝑧𝑟𝑤 ≤

1

2

}︁
× S𝑧 × S𝑤. (3.20)

This first step in the resolution resolves the complex structure in a real sense. In

particular the vector fields tangent to the fibers of 𝜑𝜕 and to the boundaries form all
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the sections of a subbundle of b𝑇𝑃𝜕 which has a complex structure, spanned by the

lift of the single vector field (3.12).

Although the complex structure is effectively resolved, the plumbing metric in

(3.8) is not. That 𝑔𝑃 has curvature −1 on the fibers, away from the singular point,

can be seen by changing variables to 𝑠 = log 𝑟, 𝑟 = 𝑟𝑧 and 𝜃 = 𝜃𝑧 in terms of which

𝑔𝑃 =
(︁ 𝜋/ log |𝑡|
sin(𝜋𝑠/ log |𝑡|)

)︁2
(𝑑𝑠2 + 𝑑𝜃2).

It then follows from the standard formula for the Gauss curvature that

𝑅 = − 1

2
√
𝑓𝑔

(︂
𝜕𝑟

(︁ 𝜕𝑟𝑔√
𝑓𝑔

)︁
+ 𝜕𝜃

(︁ 𝜕𝜃𝑓√
𝑓𝑔

)︁)︂
= −1.

In view of the coefficients in 𝑔𝑃 it is natural to introduce the inverted logarithms

of the new boundary defining functions, so replacing the radial by the logarithmic

blow-up. Thus

𝑠𝑧 = ilog 𝑟𝑧 =
1

log 1
𝑟𝑧

, 𝑠𝑤 = ilog 𝑟𝑤 (3.21)

become new boundary defining functions in place of 𝑟𝑧 and 𝑟𝑤. The space with this

new 𝒞∞ structure can be written

[𝑃 ; {𝑧 = 0}log ∪ {𝑤 = 0}log]. (3.22)

However, even after this second step, the fiber metric does not have smooth coef-

ficients:

𝑔𝑃 =
𝜋2𝑠2𝑡

sin2(𝜋𝑠𝑡
𝑠𝑤

)

(︂
𝑑𝑠2𝑤
𝑠4𝑤

+ 𝑑𝜃2𝑤

)︂
.

Indeed 𝑠𝑡 = 𝑠𝑧𝑠𝑤
𝑠𝑧+𝑠𝑤

is not a smooth function on the space (3.22).

The final part of the metric resolution is to blow up, radially, the corner formed

by the intersection of the two logarithmic boundary faces

𝑃mr = [[𝑃 ; {𝑧 = 0}log ∪ {𝑤 = 0}log]; {𝑠𝑧 = 𝑠𝑤 = 0}]. (3.23)
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In terms of the presentation (3.20) this preserves the torus factor and replaces the

2-manifold with corners by a new one with more smooth functions and an extra

boundary hypersurface.

Proposition 3.2. The model Lefschetz fibration 𝜑 lifts to a b-fibration 𝜑mr giving a

commutative diagram

𝑃mr
𝜑mr //

��

[D 1
2
; {0}log]

��
𝑃

𝜑
// D 1

2
.

(3.24)

Proof. The radial variables on the spaces 𝑃𝜕 and [D 1
2
, {0}] are related by

|𝑡| = |𝑧||𝑤| =⇒ 𝑠𝑡 =
𝑠𝑧𝑠𝑤
𝑠𝑧 + 𝑠𝑤

, 𝑠𝑡 = ilog |𝑡| (3.25)

so 𝜑 does not lift to be smooth. However, consider the further introduction of the

radial variable 𝑅 = (𝑠2𝑧 + 𝑠2𝑤)
1
2 and the smooth defining functions 𝑅𝑧 = 𝑠𝑧/𝑅, 𝑅𝑤 =

𝑠𝑤/𝑅 for the lifts of the two boundary hypersurfaces. Then

𝑠𝑡 =
𝑅𝑧𝑅𝑅𝑤

𝑅𝑧 +𝑅𝑤

(3.26)

which is smooth since 𝑅𝑧 and 𝑅𝑤 have disjoint zero sets. It follows that 𝜑 lifts to

a b-fibration as in (3.24) under which the boundary ideal lifts to the product of the

three ideals

𝜑*
mrℐ𝑠𝑡 = ℐ𝑅𝑧ℐ𝑅ℐ𝑅𝑤 . (3.27)

The generator 𝑉, in (3.12), of the fiber tangent space of 𝜑 lifts to 𝑃𝜕 as

𝑉 = 𝑟𝑧𝜕𝑟𝑧 − 𝑟𝑤𝜕𝑟𝑤 − 𝑖𝜕𝜃𝑧 + 𝑖𝜕𝜃𝑤

in terms of the coordinates in (3.19) and (3.18). Under the introduction of the loga-
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rithmic variables in (3.21) it further lifts to

𝑉 = 𝑠2𝑧𝜕𝑠𝑧 − 𝑠2𝑤𝜕𝑠𝑤 − 𝑖𝜕𝜃𝑧 + 𝑖𝜕𝜃𝑤 .

In a neighborhood of the the lift of the face 𝑠𝑧 = 0 to 𝑃mr the variables 𝑠𝑤 (defining

the new front face) and 𝜌𝑧 = 𝑠𝑧/𝑠𝑤 ∈ [0,∞) (defining the lift of 𝑠𝑧 = 0) are valid and

𝑉 = −𝑠𝑤(𝑠𝑤𝜕𝑠𝑤 − 𝜌𝑧𝜕𝜌𝑧 − 𝜌2𝑧𝜕𝜌𝑧)− 𝑖𝜕𝜃𝑧 + 𝑖𝜕𝜃𝑤 . (3.28)

Reviewing the three steps in the construction of 𝑃mr, notice that the two holo-

morphic defining functions 𝑧 and 𝑤 are well-defined up to constant multiples and

addition of (holomorphic) terms 𝑂(|𝑧|2) and 𝑂(|𝑤|2) respectively. Under these two

changes, the logarithmic variables 𝑠𝑧 change to 𝑠𝑧 + 𝑠2𝑧𝐺 with 𝐺 ∈ 𝒞∞(𝑃mr) smooth.

The same is true of 𝑠𝑤 so it follows that the radial variable

𝑅 = (𝑠2𝑧 + 𝑠2𝑤)
1/2 ∈ 𝒞∞(𝑃mr), (3.29)

which defines the front face, is also uniquely defined up to an additive term vanishing

quadratically there. This determines a ‘cusp’ structure at 𝐵II and from (3.28) we

conclude that

Lemma 3.1. The vector field 𝑅−1𝑉 on 𝑃mr spans a smooth complex line bundle,
𝐿𝑇𝑃mr over 𝑃mr with underlying real plane bundle having smooth sections precisely of

the form 𝑅−1𝑊 where 𝑊 is a smooth vector field tangent to the boundaries, to the

fibers of 𝜑mr and satisfying 𝑊𝑅 = 𝑂(𝑅2) at 𝑅 = 0.

It is natural to consider this bundle, precisely because

Lemma 3.2. The plumbing metric defines an Hermitian metric on 𝐿𝑇𝑃mr.

Proof. On 𝑃mr, in a neighborhood of the lift of {𝑠𝑧 = 0} as discussed above,

𝑠𝑡 = ilog |𝑡| = 𝑠𝑧𝑠𝑤
𝑠𝑧 + 𝑠𝑤

=
𝜌𝑧𝑠𝑤
1 + 𝜌𝑧

,
log |𝑧|
log |𝑡| =

1

1 + 𝜌𝑧
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so the fiber metric lifts to

𝑔 =
𝜋2𝑠2𝑡

sin2(𝜋𝑠𝑡
𝑠𝑤

)

(︂
𝑑𝑠2𝑤
𝑠4𝑤

+ 𝑑𝜃2𝑤

)︂
=

𝜋2𝑠2𝑡
sin2( 𝜋

1+𝜌𝑧
)

(︂
𝑑𝜌2𝑧

𝑠2𝑡 (1 + 𝜌𝑧)4
+ 𝑑𝜃2𝑧

)︂
. (3.30)

This is Hermitian and the length of 𝑉 relative to it is a smooth positive multiple of

𝑅2.

3.2 Global resolution and outline

It is now straightforward to extend the resolution of the plumbing variety to a global

resolution of any Lefschetz fibration as outlined in the Introduction. By hypothesis,

the singular fibers of a Lefschetz fibration 𝜓, as in (3.1), are isolated and each contains

precisely one singular point. Near the singular point the map 𝜓 is reduced to 𝜑 by

local complex diffeomorphisms. Thus each singular fiber is a connected compact

real manifold of dimension two with a trasversal self-intersection. The real blow-up

of such a submanifold is well-defined, since it is locally well-defined away from the

self-intersection and well-defined near the intersection in view of the transversality.

Thus

𝑀𝜕 = [𝑀,𝜑−1(𝑆)]
𝜓𝜕−→ [𝑍, 𝑆] (3.31)

reduces to 𝜑𝜕 near the preimage of the finite singular set 𝐹 ⊂ 𝑀. Similarly, the

logarithmic step can be extended globally since away from the singular set it corre-

sponds to replacing |𝑧|, by ilog |𝑧|. Here 𝑧 is a local complex defining function with

holomorphic differential along the singular fiber. Finally, the third step is within the

preimage of the set of the singular points and so is precisely the same as for the

plumbing variety.

Thus the resolved space 𝑀mr with its global b-fibration (3.3) is well-defined as is

the Hermitian bundle 𝐿𝑇𝑀mr which reduces to 𝐿𝑇𝑃mr near the singular points and is

otherwise the bundle of fiber tangents to 𝑀mr with its inherited complex structure.

To arrive at the description of the constant curvature fiber metric, as an Hermitian

metric on 𝐿𝑇𝑀mr we start with the “grafting” construction of Obitsu and Wolpert
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which we interpret as giving a good initial choice of Hermitian metric. Namely choose

any smooth Hermitian metric ℎ0 on 𝐿𝑇𝑀mr; from Lemma 3.2

𝑔Pl = 𝑒𝑓Plℎ0 near 𝐵II, 𝑓Pl smooth. (3.32)

Away from the singular set, near the singular fiber, 𝜓 is a fibration in the real

sense. Thus, it has a product decomposition, with the fibration 𝜓 the projection,

and this can be chosen to be consistent with the product structure on 𝑃 away from

the singular point. Then the complex structure on the fibers is given by a smoothly

varying tensor 𝐽. The constant curvature metric 𝑔0 on the resolved singular fiber may

therefore be extended trivially to a metric on the fibers nearby, away from the singular

points. This has non-Hermitian part vanishing at the singular fiber, so removing this

gives a smooth family of Hermitian metrics reducing to 𝑔0 and so with curvature equal

to −1 at the singular fiber. After blow-up this remains true since the regular part of

the singular fiber is replaced by a trivial circle bundle over it. On the introduction

of the logarithmic variables in the base and total space, the curvature of this smooth

family, 𝑔I, is constant to infinite order at the singular fiber since it is equal to the

limiting metric 𝑔0 to infinite order. Comparing 𝑔I to the chosen Hermitian metric

gives a conformal factor 𝑔I = 𝑒𝑓Iℎ, 𝑓I ∈ 𝒞∞(𝑁) where 𝑁 is a neighborhood of 𝐵I

excluding a neighborhood of 𝐵II. Moreover, 𝑔Pl is also equal to the trivial extension

of 𝑔0 to second order in a compatible trivialization so the two conformal factors

𝑓I = 𝑓Pl to second order (3.33)

in their common domain of definition.

The grafting construction of Obitsu and Wolpert interpreted in this setting is then

to choose a cutoff 𝜒 ∈ 𝒞∞(𝑀mr) equal to 1 in a neighborhood of 𝐵II and supported

near it and to set

ℎ = 𝑒𝜒𝑓Pl+(1−𝜒)𝑓Iℎ0. (3.34)

It follows from the discussion above that ℎ is a smooth Hermitian metric on 𝐿𝑇𝑀mr
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near the preimage of the singular fibers and that its curvature

𝑅(ℎ) =

⎧⎪⎨⎪⎩−1 near 𝐵II

−1 +𝑂(𝑠2𝑡 ) near 𝐵I.

(3.35)

We therefore use this in place of the initial choice of Hermitian metric.

Let 𝑔 be the unique Hermitian constant curvature metric on the regular fibers of

𝜓, so 𝑔 = 𝑒2𝑓ℎ. The curvatures are related by

𝑅(𝑔)𝑒2𝑓 = 𝛥ℎ𝑓 +𝑅(ℎ),

which reduces to the curvature equation

𝛥𝑓 +𝑅(ℎ) = −𝑒2𝑓 , 𝛥 = 𝛥ℎ. (3.36)

The linearization of this equation is

(𝛥+ 2)𝑓 = −(𝑅(ℎ) + 1). (3.37)

The uniform invertibility of 𝛥+ 2 with respect to the metric 𝐿2 norm, shown below,

implies that (3.36) has a unique small solution for small values of the parameter. The

proof of the Theorem in the Introduction therefore reduces to the statement that

(3.36) has a log-smooth solution vanishing at the boundary.

3.3 Bounds on (𝛥 + 2)−1

In the linearization of the curvature equation (3.37), the operator 𝛥 + 2, for the

fixed initial choice of smooth fiber hermitian metric, appears. For the Laplacian

on a compact manifold, 𝛥 + 2 is an isomorphism of any Sobolev space 𝐻𝑘+1 to

𝐻𝑘−1, in particular this is the case for the map from the Dirichlet space to its dual,

corresponding to the case 𝑘 = 0. For a smooth family of metrics on a fibration the
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family of Dirichlet spaces forms the fiber 𝐻1 space and its dual the fiber 𝐻−1 space

and 𝛥+2 is again an isomorphism between them. These spaces are modules over the

𝒞∞ functions of the total space and this, plus a simple commutation argument, shows

that in this case of a fibration 𝛥 + 2 is an isomorphism for any 𝑘 ≥ 1 between the

space of functions with up to 𝑘 derivatives, in all directions, in the Dirichlet domain

to the space with up to 𝑘 derivatives in the dual to the Dirichlet space. In particular

it follows from this that 𝛥+ 2 is an isomorphism on functions supported away from

the boundary:

𝛥+ 2 : 𝒞∞c (𝑀reg)←→ 𝒞∞c (𝑀reg), 𝑀reg =𝑀mr ∖ 𝜕𝑀mr. (3.38)

We extend this result up to the boundary of the resolved space for the Lefschetz

fibration in terms of tangential regularity.

Proposition 3.3. For the Laplacian of the grafted metric

(𝛥+ 2)−1 : 𝜌
− 1

2
II 𝐻

𝑘
b(𝑀mr) −→ 𝜌

− 1
2

II 𝐻
𝑘
b(𝑀mr) ∀ 𝑘 ∈ N. (3.39)

The main complication in the proof arises from the fact that the Dirichlet space is

not a 𝒞∞ module.

First consider the following analog of Fubini’s theorem.

Lemma 3.3. For the fiber metrics corresponding to an Hermitian metric on 𝐿𝑇𝑀mr,

the metric density is of the form

|𝑑𝑔| = 𝜌II𝜈b,fib (3.40)

and the space of weighted 𝐿2 functions with values in the 𝐿2 spaces of the fibers can

be realized as

𝐿2(𝑀mr; |𝑑𝑔|𝜑*
mr𝜈b(𝑍mr)) = 𝐿2

b(𝑍mr;𝐿
2(|𝑑𝑔|)) = 𝜌

− 1
2

II 𝐿
2
b(𝑀mr). (3.41)

Proof. Away from 𝐵II ⊂𝑀mr the resolved map 𝜓mr is a fibration, 𝐿𝑇𝑀mr is the fiber
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tangent bundle and the boundary is in the base. Thus (3.40) and (3.41) reduce to

the local product decomposition for a fibration and Fubini’s Theorem.

It therefore suffices to localize near 𝐵II and to consider the plumbing metric since

all hermitian metrics on 𝐿𝑇𝑀mr are quasi-conformal. The symmetry in 𝑧 and 𝑤

means that it suffices to consider the region in which 𝜌𝑧 = 𝑠𝑧/𝑠𝑤 and 𝑠𝑤 are defining

functions for the two boundary hypersurfaces 𝐵I and 𝐵II respectively. The plumbing

metric may then be written

𝑔 =
𝜋2𝑠2𝑡

sin2(𝜋𝑠𝑡
𝑠𝑤

)

(︂
𝑑𝑠2𝑤
𝑠4𝑤

+ 𝑑𝜃2𝑤

)︂
=

𝜋2𝑠2𝑡
sin2( 𝜋

1+𝜌𝑧
)

(︂
𝑑𝜌2𝑧

𝑠2𝑡 (1 + 𝜌𝑧)4
+ 𝑑𝜃2𝑧

)︂
.

Thus the fiber area form,

|𝑑𝑔| = 𝜋2𝑠2𝑡
sin2( 𝜋

1+𝜌𝑧
)

𝑑𝜌𝑧
𝑠𝑡(1 + 𝜌𝑧)2𝑑𝜃𝑧

= 𝑓(𝜌𝑧)
𝑠𝑡
𝜌𝑧

𝑑𝜌𝑧
𝜌𝑧
𝑑𝜃𝑧 = 𝑓(𝜌𝑧)𝑠𝑤

𝑑𝜌𝑧
𝜌𝑧
𝑑𝜃𝑧,

is a positive multiple of 𝑠𝑤 𝑑𝜌𝑧𝜌𝑧 𝑑𝜃𝑧 from which (3.40) follows.

The identication (3.41) holds after localization away from 𝐵II and locally near it

||𝑓 ||2𝐿2
𝑏(𝑍mr);𝐿2(𝑑𝑔)) =

∫︁ ∫︁
|𝑓 |2|𝑑𝑔|𝑑𝑠𝑡

𝑠𝑡
𝑑𝜃𝑡 =

∫︁
𝑍mr

|𝑓 |2𝜌II𝜈b.

Since (𝛥+ 2)−1 is a well-defined bounded operator on the metric 𝐿2 space which

depends continuously on the parameter in 𝑍 ∖𝑆 with norm bounded by 1/2, it follows

from (3.41) that

(𝛥+ 2)−1 is bounded on 𝜌−
1
2

II 𝐿
2
b(𝑀mr). (3.42)

We consider the ‘total’ Dirichlet space based on this 𝐿2 space – we are free to

choose the weighting in the parameter space. Thus, let 𝐷 be the the completion of

the smooth functions on 𝑀mr supported in the interior with respect to

‖𝑢‖2𝐷 =

∫︁ (︀
|𝑑fib𝑢|2𝑔 + 2|𝑢|2

)︀
|𝑑𝑔|𝜑*𝜈b(𝑍mr). (3.43)
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Note that 𝐷 depends only on the quasi-isometry class of the fiber Hermitian metric

but does depend on the induced fibration of the boundary 𝐵II.

The dual space, 𝐷′, to 𝐷 as an abstract Hilbert space, may be embedded in the

extendible distributions on 𝑀mr using the volume form 𝜑*
mr𝜈b|𝑑𝑔|. As is clear from

the discussion below, the image is independent of the choice of, 𝜈b, of a logarithmic

area form on 𝑍mr but the embedding itself depends on this choice. Thus, 𝑣 ∈ 𝐷′ is

identified as a map 𝑣 : 𝒞∞𝑐 (𝑀mr) −→ C by

∫︁
𝑣𝜑|𝑑𝑔|𝜑*𝜈b(𝑍mr) = 𝑣(𝜑). (3.44)

We consider the space of vector fields 𝒲 ⊂ 𝜌−1
II 𝒱b(𝑀mr) which are tangent to the

fibers of 𝜓mr and to the fibers of 𝐵II and which commute with 𝜕𝜃𝑧 and 𝜕𝜃𝑤 near 𝐵II.

Proposition 3.4. For the grafted metric

𝛥+ 2 : 𝐷 → 𝐷′ ⊂ 𝒞−∞(𝑀mr)

is an isomorphism, where the elements of 𝐷′ are precisely those extendible distribu-

tions which may be written as finite sums

𝑣 =
∑︁
𝑗

𝑊𝑗𝑢𝑗, 𝑊𝑗 ∈ 𝒲 , 𝑢𝑗 ∈ 𝜌−
1
2

II 𝐿
2
b(𝑍mr) (3.45)

and has the injectivity property that

𝑢 ∈ 𝒞−∞(𝑀mr), (𝛥+ 2)𝑢 ∈ 𝐷′ =⇒ 𝑢 ∈ 𝐷. (3.46)

This result remains true for any Hermitian metric on 𝐿𝑇𝑀mr but is only needed here

for the grafted metric which is equal to the plumbing metric near 𝐵II.

Proof. Although defined above by completion of the space of smooth functions sup-

ported away from the boundary of 𝑀mr with respect to the norm (3.43) the space 𝐷
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can be identified in the usual way with the subspace of 𝒞−∞(𝑀mr) consisting of those

𝑢 ∈ 𝜌−
1
2

II 𝐿
2
b(𝑀mr) s.t. 𝒲 · 𝑢 ⊂ 𝜌

− 1
2

II 𝐿
2
b(𝑀mr) (3.47)

with the derivatives taken in the sense of extendible distributions. Indeed, choosing

a cutoff 𝜇 ∈ 𝒞∞c (R) which is equal to 1 near 0 the sequence of multiplication opera-

tors 1 − 𝜇(𝑛𝜌II) tends strongly to the identity on 𝜌
− 1

2
II 𝐿

2
b(𝑀mr). By assumption this

commutes with the elements of 𝒲 and it follows that elements with support in the

interior of 𝑀mr, where 𝜓mr is a fibration, are dense in 𝐷; for these approximation by

smooth elements is standard.

That𝛥+2 : 𝐷 −→ 𝐷′ ⊂ 𝒞−∞(𝑀mr) is the explicit form of the Riesz representation

theorem in this setting. Then the identification, (3.45), of elements of 𝐷′ follows from

the form of 𝛥. Away from 𝐵II, 𝐷 is a 𝒞∞ module (since the elements of𝒲 are smooth

there) and then (3.45) is the identification of the fiber 𝐻−1 space. Near 𝐵II we may

use the explicit form of the Laplacian for the plumbing metric.

Indeed, the local version of the Dirichlet form is

𝐷(𝜑, 𝜓) =

∫︁ (︀
𝑉Re𝜑𝑉Re𝜑+ 𝑉Im𝜑𝑉Im𝜑

)︀ 𝑑𝑠𝑤𝑑𝜃𝑤
𝑠2𝑤

(3.48)

where 𝑉 is given by (3.28) and it follows that the Laplacian acting on functions on

the fibers can be written

𝛥 = −
sin2( 𝜋

1+𝜌𝑧
)

𝜋2𝑠2𝑡

(︀
𝑉 2
R + (𝜕𝜃𝑧 − 𝜕𝜃𝑤)2

)︀
(3.49)

in the coordinates 𝑠𝑤, 𝜌𝑧, 𝜃𝑤 and 𝜃𝑧.

The vector fields 𝑉R and 𝜌−1
II (𝜕𝜃𝑧 − 𝜕𝜃𝑤) generate 𝒲 near 𝐵II over the functions

which are constant in 𝜃𝑤 and 𝜃𝑧. If we write Diff𝑘𝒲(𝑀mr) for the differential operators

which can be written as sums of products of elements of at most 𝑘 elements of 𝒲
with smooth coefficients which are independent of the angular variables near 𝐵II then

𝛥 ∈ Diff2
𝒲(𝑀mr). (3.50)
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Moreover
Diff1

𝒲(𝑀mr) : 𝐷 −→ 𝜌
− 1

2
II 𝐿

2
b(𝑀mr) and

Diff1
𝒲(𝑀mr) : 𝜌

− 1
2

II 𝐿
2
b(𝑀mr) −→ 𝐷′

(3.51)

where the second statement follows by duality from the first. Together (3.50) and

(3.51) imply (3.45).

Consider the space 𝒰 ⊂ 𝒱b(𝑀mr), defined analogously to 𝒲 , as consisting of the

vector fields which commute with 𝜕𝜃𝑧 and 𝜕𝜃𝑤 near 𝐵II. Then let Diff𝑘𝒰(𝑀mr) be the

part of the enveloping algebra of 𝒰 up to order 𝑘, this just consists of the elements of

Diff𝑘b(𝑀mr) which commute with 𝜕𝜃𝑧 and 𝜕𝜃𝑤 near 𝐵II. We may define ‘higher order’

versions of the spaces 𝐷 and 𝐷′ :

𝐷𝑘 = {𝑢 ∈ 𝐷; Diff𝑘𝒰(𝑀mr) · 𝑢 ⊂ 𝐷},

𝐷′
𝑘 = {𝑢 ∈ 𝐷′; Diff𝑘𝒰(𝑀mr) · 𝑢 ⊂ 𝐷′}, 𝑘 ∈ N. (3.52)

Since 𝒰 spans 𝒱b(𝑀mr) over 𝒞∞(𝑀mr) it follows that

𝐷𝑘 ⊂ 𝜌
− 1

2
II 𝐻

𝑘
b(𝑀mr) ⊂ 𝐷′

𝑘 ∀ 𝑘. (3.53)

Proposition 3.5. For any 𝑘, 𝒞∞(𝑀mr) is dense in 𝐷𝑘 and 𝐷′
𝑘 and

𝛥+ 2 : 𝐷𝑘 −→ 𝐷′
𝑘 (3.54)

is an isomorphism.

Proof. The density statement follows from the same argument as for 𝐷 and 𝐷′.

Consider the commutator relation which follows directly from the definitions

[𝒰 ,𝒲 ] ⊂ 𝒲 =⇒ [Diff𝑘𝒰(𝑀mr), 𝛥] ⊂ Diff2
𝒲(𝑀mr) ·Diff𝑘−1

𝒰 (𝑀mr), 𝑘 ∈ N. (3.55)

To prove (3.54) we need to show that if 𝑢 ∈ 𝐷, 𝑄 ∈ Diff𝑘𝒰(𝑀mr) and 𝑓 = (𝛥+2)𝑢 ∈
𝐷′
𝑘 then 𝑄𝑢 ∈ 𝐷. Assuming the result for 𝑄 ∈ Diff𝑘−1

𝒰 (𝑀mr) it follows from (3.55)
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that

𝛥𝑄𝑢 = 𝑄𝛥𝑢+
∑︁
𝑝

𝐿𝑝𝑄𝑝𝑢 with 𝐿𝑝 ∈ Diff2
𝒲(𝑀mr), 𝑄𝑝 ∈ Diff𝑘−1

𝒰 (𝑀mr)

=⇒ 𝛥𝑄𝑢 ∈ 𝐷′ =⇒ 𝑄𝑢 ∈ 𝐷 (3.56)

by distributional uniqueness.

Proof of Proposition 3.3. The boundedness (3.39) follows directly from (3.54) and

(3.53).

3.4 Formal solution of (𝛥 + 2)𝑢 = 𝑓

In the previous section the uniform invertibility of 𝛥 + 2 for the grafted metric was

established. In particular the case 𝑘 =∞ in (3.39) shows the invertibility on conormal

functions. In this section we solve the same equation, (𝛥+ 2)𝑢 = 𝑓 in formal power

series with logarithmic terms.

Let 𝒞∞𝐹 (𝑀mr) ⊂ 𝒞∞(𝑀mr) denote the subspace annihilated to infinte order at 𝐵II

by the angular operators 𝐷𝜃𝑧 and 𝐷𝜃𝑤 .

Lemma 3.4. The restriction, 𝛥I, of the Laplacian to 𝐵I satisfies

(𝛥I + 2)−1
(︀
𝜌II(log 𝜌II)

𝑘𝑔𝑘
)︀

= 𝜌II

∑︁
0≤𝑝≤𝑘+1

(log 𝜌II)
𝑝𝑢𝑝, 𝑢𝑝 ∈ 𝒞∞𝐹 (𝑀mr) ∀ 𝑔𝑘 ∈ 𝒞∞𝐹 (𝑀mr). (3.57)

Proof. The fiber metric on 𝐵I is a trivial family with respect to the product decom-

position 𝐵I = 𝐴 × S where 𝐴 has the complete metric on the Riemann surface with

cusps arising from the ‘removal’ of the nodal points. The Laplacian is therefore es-

sentially self-adjoint and non-negative, so 𝛥 + 2 is invertible. Either from the form

of a parameterix or by Fourier expansion near the cusps it follows that rapid decay

in the non-zero Fourier modes (in both angular variables) is preserved by (𝛥I +2)−1.

Near the boundary the zero Fourier mode satisfies a reduced, ordinary differential,
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equation with regular singular points and having indicial roots 1 and −2 in terms of

a defining function for the (resolved) cusps. Then (3.57) follows directly.

Lemma 3.5. If 𝑢 ∈ 𝒞∞𝐹 (𝑀mr) then 𝛥𝑢 ∈ 𝒞∞𝐹 (𝑀mr) restricts to 𝐵II to ̃︀𝛥II𝑣, 𝑣 = 𝑢
⃒⃒
𝐵II

where ̃︀𝛥II is an ordinary differential operator of order 2 elliptic in the interior with

regular singular endpoints, with indicial roots −1, 2 such that

Nul( ̃︀𝛥II + 2) ⊂ 𝜌−1
I 𝒞∞(𝐵II) (3.58)

has no smooth elements and for ℎ𝑗 ∈ 𝒞∞𝐹 (𝐵II)

( ̃︀𝛥II + 2)−1(log 𝜌I)
𝑗ℎ𝑗 =

∑︁
0≤𝑞≤𝑗

(log 𝜌I)
𝑞𝑣𝑞,𝑗 + 𝜌2I (log 𝜌I)

𝑗+1𝑤𝑗

with 𝑣𝑞,𝑗, 𝑤𝑗 ∈ 𝒞∞𝐹 (𝐵II).

(3.59)

Proof. The form of the Laplacian in (3.49) shows that the reduced operator ̃︀𝛥II exists

and after the change coordinates on 𝐵II to

𝜌 =
1

1 + 𝜌II
(3.60)

becomes

𝛥+ 2 = 2− (
sin(𝜋𝜌)

𝜋𝜌
)2[(𝜌𝜕𝜌)

2 − 𝜌𝜕𝜌]. (3.61)

The indicial roots of this operator are 2 and −1 and its homoeneity shows that the

null space has no logarithmic terms. The absence of smooth elements in the null

space follows by integration by parts and positivity.

The problem that we need to solve at 𝐵II is

(𝛥+ 2)(𝜌II𝑤) = 𝜌II𝑔 +𝑂(𝜌2II) =⇒ ( ̃︀𝛥(1)
II + 2)(𝑤

⃒⃒
𝐵II

) = 𝑔
⃒⃒
𝐵II
. (3.62)

Since the parameter, 𝑠𝑡, is the product of defining functions for 𝐵I and 𝐵II and

commutes through the problem this can be solved by dividing by it. Thus ̃︀𝛥(1)
II is

obtained from ̃︀𝛥II by conjugating by a boundary defining function on 𝐵II so the
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preceding Lemma can be applied after noting the shift of the indicial roots.

Lemma 3.6. For the conjugated operator on 𝐵II,

Nul( ̃︀𝛥(1)
II + 2) ⊂ 𝒞∞(𝐵II) (3.63)

with the Dirichlet problem uniquely solvable and

( ̃︀𝛥II + 2)−1(log 𝜌I)
𝑗ℎ𝑗 =

∑︁
0≤𝑞≤𝑗

(log 𝜌I)
𝑞𝑣𝑞,𝑗 + 𝜌3I (log 𝜌I)

𝑗+1𝑤𝑗

with 𝑣𝑞,𝑗, 𝑤𝑗 ∈ 𝒞∞𝐹 (𝐵II).

(3.64)

To express the form of the expansion which occur below, consider the space of

polynomials in log 𝜌I and log 𝜌II with coefficients in 𝒞∞𝐹 (𝑀mr)

𝒫𝑘 =
{︃
𝑢 =

∑︁
0≤𝑙+𝑝≤𝑘

(log 𝜌I)
𝑙(log 𝜌II)

𝑝𝑢𝑙,𝑝, 𝑢𝑙,𝑝 ∈ 𝒞∞𝐹 (𝑀mr)

}︃
. (3.65)

We also consider the filtration of these spaces by the maximal order in each of the

variables:

𝒫𝑘,𝑗I =

{︃
𝑢 =

∑︁
0≤𝑙+𝑝≤𝑘, 𝑙≤𝑗

(log 𝜌I)
𝑙(log 𝜌II)

𝑝𝑢𝑙,𝑝, 𝑢𝑙,𝑝 ∈ 𝒞∞𝐹 (𝑀mr)

}︃
, 𝑗 ≤ 𝑘

𝒫𝑘,𝑚II =

{︃
𝑢 =

∑︁
0≤𝑙+𝑝≤𝑘, 𝑝≤𝑚

(log 𝜌I)
𝑙(log 𝜌II)

𝑝𝑢𝑙,𝑝, 𝑢𝑙,𝑝 ∈ 𝒞∞𝐹 (𝑀mr)

}︃
, 𝑚 ≤ 𝑘.

(3.66)

Since the coefficients are in 𝒞∞𝐹 (𝑀mr), 𝛥 acts as a smooth b-differential operator on

all of these spaces. If 𝑢 ∈ 𝒫𝑘,𝑝I , then 𝑢 = 𝑢𝑝 + 𝑢′ with 𝑢′ ∈ 𝒫𝑘,𝑝−1
I and 𝑢𝑝 = 𝑣(log 𝜌I)

𝑝

where 𝑣 ∈ 𝒫𝑘−𝑝,0I . Then 𝛥𝑢 = (𝛥I𝑣)(log 𝜌I)
𝑝 + 𝑓 ′, 𝑓 ′ ∈ 𝒫𝑘−1,𝑝−1

I + 𝜌I𝒫𝑘,𝑝−1
I where the

first error term corresponds to at least one derivation of (log 𝜌I)
𝑝. Similar statements

apply to 𝐵II and 𝛥̃II.

As a basis for iteration, to capture the somewhat complicated behavior of the

logarthimic terms, we first consider a partial result.
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Proposition 3.6. For each 𝑘

𝑓 ∈ 𝜌II𝒫𝑘 + 𝜌I𝜌II𝒫𝑘+1 =⇒ ∃ 𝑢 ∈ 𝜌II𝒫𝑘+1 + 𝜌2I𝜌II𝒫𝑘+2,𝑘+1
II (3.67)

such that

(𝛥+ 2)𝑢− 𝑓 ∈ 𝑠𝑡
(︀
𝜌II𝒫𝑘+1 + 𝜌I𝜌II𝒫𝑘+2

)︀
. (3.68)

Proof. We first solve on 𝐵I, then on 𝐵II. The second term in 𝑓 in (3.67) vanishes on

𝐵I so the restriction 𝑓I ∈ 𝜌II𝒫𝑘
⃒⃒
𝐵I
. Proceeding iteratively, suppose

𝑓 ∈ 𝜌II𝒫𝑘,𝑗I + 𝜌I𝜌II𝒫𝑘+1

with 𝑗 ≤ 𝑘 and consider the term of order 𝑗 in log 𝜌I; this is a polynomial in log 𝜌II

of degree at most 𝑘 − 𝑗 with coefficients in 𝜌II𝒞∞𝐹 (𝐵I). Applying Lemma 3.4 to the

restriction to 𝐵I gives a polynomial in log 𝜌II of degree at most 𝑘 − 𝑗 + 1 with coef-

ficients in 𝜌II𝒞∞𝐹 (𝐵I). Extending these coefficients off 𝐵I and restoring the coefficient

of (log 𝜌I)
𝑗 gives 𝑣𝑗 ∈ 𝜌II𝒫𝑘+1,𝑗

I such that

(𝛥+ 2)𝑣𝑗 − 𝑓 = −𝑓 ′, 𝑓 ′ ∈ 𝜌II𝒫𝑘,𝑗−1
I + 𝜌I𝜌II𝒫𝑘+1.

Here the first part of the error arises from differentiation of the factor (log 𝜌I)
𝑗 in 𝑣𝑗

at least once. If we start with 𝑗 = 𝑘 and proceed iteratively over decreasing 𝑗 this

allows us to find 𝑣 ∈ 𝜌II𝒫𝑘+1 such that

(𝛥+ 2)𝑣 − 𝑓 = −𝑔 ∈ 𝜌I𝜌II𝒫𝑘+1. (3.69)

Now we proceed similarly by solving on 𝐵II using Lemma 3.6. So, suppose ℎ ∈
𝜌I𝜌II𝒫𝑘+1,𝑝

II , for 𝑝 ≤ 𝑘+1. Then the coefficient ℎ𝑝 of (log 𝜌II)
𝑝 is a polynomial of degee

at most 𝑘 + 1 − 𝑝 in log 𝜌I with coefficients in 𝜌I𝜌II𝒞∞𝐹 (𝑀mr). Conjugating away the

factor of 𝜌II and applying Lemma 3.6 to the restriction to 𝐵II and then extending the

coefficients off 𝐵II allows us to find 𝑤𝑝 ∈ 𝜌I𝜌II𝒫𝑘+1,𝑝
II + 𝜌2I𝜌II𝒫𝑘+2,𝑝

II , where the second

term arises from the possible increase in multiplicity of the logarithmic coefficient of
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𝜌2I in the solution, satisfying

(𝛥+ 2)𝑤𝑝 − 𝑔 = −𝑔′ + 𝑒, 𝑔′ ∈ 𝜌I𝜌II𝒫𝑘+1,𝑝−1
II , 𝑒 ∈ 𝜌I𝜌

2
II𝒫𝑘+1,𝑝

II + 𝜌2I𝜌
2
II𝒫𝑘+2,𝑝

II (3.70)

where the first part of the error arises from differentiation of (log 𝜌II)
𝑝 at least once.

Starting with 𝑝 = 𝑘 + 1 and iterating over decreasing 𝑝 allows us to find 𝑤 ∈
𝜌I𝜌II𝒫𝑘+1 + 𝜌2I𝜌II𝒫𝑘+2,𝑘+1 such that

(𝛥+ 2)𝑤 − 𝑔 ∈ 𝜌I𝜌
2
II𝒫𝑘+1 + 𝜌2I𝜌

2
II𝒫𝑘+2. (3.71)

Combining (3.69) and (3.71) gives (3.68) since 𝜌I𝜌II is a smooth multiple of 𝑠𝑡.

Proposition 3.6 allows iteration since 𝑠𝑡 commutes through 𝛥+ 2.

Proposition 3.7. If 𝑓 ∈ 𝜌II𝒫𝑘 + 𝜌I𝜌II𝒫𝑘+1 then 𝑢 = (𝛥+ 2)−1𝑓 ∈ 𝑠−𝜖𝑡 𝐻∞
b (𝑀mr) for

any 𝜖 > 0, has a complete asymptotic expansion of the form

𝑢 ≃
∑︁
𝑗≥0

𝑠𝑗𝑡𝑢𝑗, 𝑢𝑗 ∈ 𝜌II𝒫𝑘+𝑗 + 𝜌I𝜌II𝒫𝑘+𝑗+1,𝑘+𝑗
II . (3.72)

Proof. For any 𝜖 > 0, 𝑔 = 𝑠𝜖𝑡𝑓 ∈ 𝜌
− 1

2
II 𝐻

∞
b (𝑀mr) so 𝑢 = 𝑠−𝜖𝑡 (𝛥+2)−1𝑔 exists by (3.39).

Comparing 𝑢 to the expansion cut off at a finite point gives (3.72).

This result can itself be iterated, asymototically summed and then the rapidly

decaying remainder term again removed to show the polyhomogeneity of the solution

for an asymptotically covergent sum over terms on the right in (3.72).

For the solution of the curvature equation the leading term is smooth because of

the special structure of the forcing term.

Lemma 3.7. If 𝑓 ∈ 𝒞∞(𝑀mr) has support disjoint from 𝐵II then 𝑢 = (𝛥 + 2)−1𝑓 is

log-smooth and has an asymptotic expansion of the form

𝑢 ≃ 𝜌II𝑣0 +
∑︁
𝑘≥1

𝑠𝑘𝑡 𝑣𝑘, 𝑣𝑘 ∈ 𝜌II𝒫𝑘 + 𝜌I𝜌II𝒫𝑘+1,𝑘
II . (3.73)
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Note that log-smoothness follows from the fact that 𝑠𝑡 = 𝑎𝜌I𝜌II, 𝑎 ∈ 𝒞∞𝐹 (𝑀mr) so each

term in the expansion can be written as a polynomial in 𝜌I, 𝜌I log 𝜌I, 𝜌II and 𝜌II log 𝜌II

of degree at least 2𝑘.

3.5 Polyhomogeneity for the curvature equation

Under a conformal change from the grafted metric ℎ with curvature 𝑅 to 𝑒2𝑓ℎ the

condition for the curvature of the new metric to be −1 given by (3.9). To construct

the canonical metrics on the fibers we proceed, as in the linear case discussed above,

to solve (3.9) in the sense of formal power series at the two boundaries above 𝑠𝑡 = 0

and then, using the Implicit Function Theorem deduce that the actual solution has

this asymptotic expansion.

Lemma 3.8. For the grafted metric there is a formal power series

∑︁
𝑘≥2

𝑠𝑘𝑡 𝑓𝑘, 𝑓2 ∈ 𝒞∞𝐹 (𝑀mr), 𝑓𝑘 ∈ 𝜌II𝒫𝑘−2 + 𝜌I𝜌II𝒫𝑘−1,𝑘−2
II , 𝑘 ≥ 3, (3.74)

solving (3.9).

The 𝒫𝑘 are defined in (3.65); in the last term there is no factor of (log 𝜌II)
𝑘−1.

Proof. Since 𝑅+ 1 ∈ 𝑠2𝑡𝒞∞(𝑀mr) is supported away from 𝐵II, Lemma 3.7 shows that

𝑔1 = −(𝛥 + 2)−1(𝑅 + 1) is of the form (3.74). We look for the formal power series

solution of the non-linear problem as

𝑓 ≃
∑︁
𝑘≥1

𝑔𝑘 (3.75)

Inserting this sum into the equation gives

−(𝛥+ 2)(
∑︁
𝑖≥1

𝑔𝑖) =
∑︁
𝑗≥2

2𝑗

𝑗!
(𝑔1 +

∑︁
𝑘≥2

𝑔𝑘)
𝑗 + 1 +𝑅. (3.76)
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For each 𝑖 ≥ 2 we fix 𝑔𝑖 by

− (𝛥+ 2)𝑔𝑖 =
∑︁
𝑗≥1

2𝑗

𝑗!
(𝑔1 +

∑︁
𝑖−1≥𝑘≥2

𝑔𝑘)
𝑗 − 2𝑗

𝑗!
(𝑔1 +

∑︁
𝑖−2≥𝑘≥2

𝑔𝑘)
𝑗

= 𝑔𝑖−1𝑃𝑖(𝑔1, 𝑔2, ...𝑔𝑖−1) (3.77)

where 𝑃𝑖 is a formal power series in 𝑔1, ...𝑔𝑖−1 without constant term.

Proceeding by induction we claim that

𝑔𝑖 ≃
∑︁
𝑗≥2𝑖

𝑠𝑗𝑡𝑔𝑖,𝑗, 𝑔𝑖,𝑗 ∈ 𝜌II𝒫𝑗−2𝑖 + 𝜌I𝜌II𝒫𝑗−2𝑖+1,𝑗−2𝑖
II . (3.78)

We have already seen that this holds for 𝑖 = 1 and using the obvious multiplicitivity

properties

𝒫𝑘 · 𝒫𝑗 ⊂ 𝒫𝑗+𝑘, 𝒫𝑘 · 𝒫𝑗,𝑗−1
II ⊂ 𝒫𝑗+𝑘,𝑗+𝑘−1

II

it follows from the inductive assumption, that (3.78) holds for all smaller indices, that

𝑔𝑖−1𝑃𝑖(𝑔1, 𝑔2, ...𝑔𝑖−1)

≃ 𝑠2𝑖𝑡
∑︁

𝑘≥2,𝑗≥2𝑖−2

(︀
𝜌II𝒫𝑗−2𝑖+2 + 𝜌I𝜌II𝒫𝑗−2𝑖+3,𝑗−2𝑖+2

II

)︀ (︁
𝜌II𝒫𝑘−2 + 𝜌I𝜌II𝒫𝑘−1,𝑘−2

II

)︁
≃
∑︁
𝑘≥2𝑖

𝑠𝑗𝑘𝐹𝑘, 𝐹𝑘 ∈ 𝜌II𝒫𝑘−2𝑖 + 𝜌I𝜌II𝒫𝑘−2𝑖+1,𝑘−2𝑖
II .

(3.79)

Applying Proposition 3.7 we recover the inductive hypothesis at the next step. Then

(3.74) follows from (3.75) and (3.78).

Summing the formal power series solution gives a polyhomogeneous function with

−𝛥𝑓0 = 𝑅 + 𝑒2𝑓0 + 𝑔, 𝑔 ∈ 𝑂(𝑠∞𝑡 ). (3.80)

Now we look for the solution as a perturbation 𝑓 = 𝑓0 + 𝑓, so 𝑓 satisfies

−𝛥𝑓 = −𝑔 + 𝑒2𝑓0(𝑒2𝑓 − 1). (3.81)
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which can be rewritten as

𝑓 = −(𝛥+ 2)−1
(︁
2𝑓(𝑒2𝑓0 − 1) + 𝑒2𝑓0(𝑒2𝑓 − 1− 2𝑓)− 𝑔

)︁
.

So consider the nonlinear operator

𝐾 : 𝑓 ↦→ (𝛥+ 2)−1
(︁
2𝑓(𝑒2𝑓0 − 1) + 𝑒2𝑓0(𝑒2𝑓 − 1− 2𝑓)− 𝑔

)︁
(3.82)

which acts on 𝑠𝑁𝑡 𝐻
𝑀
𝑏 (𝑀mr) for all 𝑁 ≥ 1 and 𝑀 > 2. Note that for 𝑀 > 2, the b-

space 𝐻𝑀
𝑏 (𝑀mr) is closed under multiplication, therefore this weighted Sobolev space

is also an algebra. Since the nonlinear terms are at least quadratic, 𝐾 is well-defined

on this domain. The solution to (3.81) satisfies 𝑓 = 𝐾(𝑓).

Proposition 3.8. For any 𝑀 > 1 and 𝑁 ≥ 1 there is a unique solution 𝑓 ∈
𝑠𝑁𝑡 𝐻

𝑀
𝑏 (𝑀mr) to the equation (3.81).

Proof. We construct the solution 𝑓 by iteration. Let 𝑓 = 𝑠𝑁𝑡
∑︀

𝑖≥2 𝑠𝑡
𝑖𝑓𝑖, put it into

equation (3.81), divide by the common factor 𝑠𝑁𝑡 on both sides and then we get

∑︁
𝑖≥2

𝑠𝑖𝑡𝑓𝑖 = 𝐾(
∑︁

𝑠𝑖𝑡𝑓𝑖) = (𝛥+ 2)−1
(︁
(𝑒2𝑓0 − 1)

∑︁
𝑠𝑖𝑡𝑓𝑖 + 𝑠𝑁𝑡 (

∑︁
𝑠𝑖𝑡𝑓𝑖)

2 + 𝑠−𝑁𝑡 𝑔
)︁

(3.83)

The right hand side belongs to (𝛥+2)−1(𝑂(𝑠2𝑡 )) because of the quadratic structure and

the fact that 𝑒2𝑓0−1 ∈ 𝑂(𝑠2𝑡 ). Therefore the right hand side is the form (𝛥+2)−1(𝑠𝑡ℎ)

where 𝑠𝑡ℎ ∈ 𝜌−
1
2

II 𝐻
𝑀
b (𝑀mr) so this quantity is well-defined using Proposition 3.3.

Now we proceed by induction. Assume that the first k terms in the expansion

have been solved, then the equation for the next term 𝑓𝑘 is given by

𝑓𝑘 = (𝛥+ 2)−1
(︀
(𝑒2𝑓0 − 1)𝑓𝑘−2 + 𝑠𝑁𝑡 𝑄(𝑓0, ...𝑓𝑘−1)

)︀
.

where the polynomial 𝑄 on the right hand side is a quadratic polynomial of order

𝑘 − 𝑁. By using the invertibility property in Proposition 3.3, we can now solve 𝑓𝑘.

Therefore the induction gives us the total expansion for 𝑓 .
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Proof of Theorem 3.1. From Proposition 3.8 we obtain the solution, 𝑓 = 𝑓0 + 𝑓 ,

to the curvature equation 𝑅(𝑒2𝑓ℎ) = −1. Since 𝑓0 is the formal power series and

𝑓 ∈ 𝑠∞𝑡 𝒞∞(𝑀mr), we get the solution with required regularity.

114



Chapter 4

Group resolution

4.1 Introduction

For a general compact Lie group G acting on a smooth compact manifold with corners

𝑀 , Albin and Melrose [1] showed that there is a canonical full resolution such that

the group action lifts to the blow-up space 𝑌 (𝑀) to have a unique isotropy type.

This generalized the result of Borel [4] that if all the isotropy groups of a compact

group action are conjugate then the orbit space 𝐺∖𝑀 is smooth.

In this paper, we give an explicit construction of such a resolution of the unitary

group action on the space of self-adjoint matrices

𝑆 = 𝑆(𝑛) = {𝑋 ∈𝑀𝑛(C)|𝑋* = 𝑋}

with the unitary group 𝑈(𝑛) acting by conjugation: for 𝑢 ∈ 𝑈(𝑛), 𝑋 ∈ 𝑆,

𝑢 ·𝑋 := 𝑢𝑋𝑢−1.

The orbit of an element 𝑋 ∈ 𝑆, denoted by 𝑈(𝑛) · 𝑋, consists of the matrices with

the same eigenvalues including multiplicities. For a matrix 𝑋 ∈ 𝑆 with 𝑚 distinct

eigenvalues {𝜆𝑗}𝑚𝑗=1, each with multiplicity 𝑖𝑘, 𝑘 = 1, 2, ..,𝑚, the isotropy group of 𝑋
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is isomorphic to a direct sum of smaller unitary groups:

𝑈(𝑛)𝑋 = {𝑢 ∈ 𝑈(𝑛) | 𝑢 ·𝑋 = 𝑋} ∼= ⊕𝑚𝑘=1𝑈(𝑖𝑘).

Thus the matrices with the same multiplicities {𝑖𝑘}, have conjugate isotropy groups.

The isotropy types are therefore parametrized by the partition of 𝑛 into integers.

Note here that the partition contains information about ordering of the eigenvalues,

for example, the two partitions of 3, {𝑖1 = 1, 𝑖2 = 2} and {𝑖1 = 2, 𝑖2 = 1}, are not the

same type.

For 𝑛 > 1, the eigenvalues are not smooth functions on 𝑆, but are singular where

the multiplicities change. We will show that, by doing an iterative blow up, the

singularities are resolved and the eigenvalues become smooth functions on the resolved

space.

Recall the lemma of group action resolution in [1]:

Lemma 4.1 ([1]). A compact manifold (with corners), M, with a smooth, boundary

intersection free, action by a compact Lie group, G, has a canonical full resolution,

𝑌 (𝑀), obtained by iterative blow-up of minimal isotropy types.

Consider the trivial bundle over 𝑆,

𝑀 := 𝑆 × C𝑛,

the fiber of which can be decomposed into 𝑛 eigenspaces of the self-adjoint matrix at

the base point. This decomposition is not unique at matrices with multiple eigenvalues

and in general the eigenspaces are not smooth.

There are two basic kinds of real blow up, namely radial and projective, which

give different results; radial blow up of a hypersurface produces a new boundary while

projective blow up does not. As pointed out in [1], projective blow up usually requires

an extra step of reflection in the iterative scheme in order to obtain smoothness. We

will show that, after radial blow up, the trivial bundle 𝑀 decomposes into the direct

sum of 𝑛 1-dimensional eigenspaces. In contrast, after the projective blow up, though
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the eigenvalues are still smooth on the resolved space and locally this is a smooth

decomposition into simple eigenspaces, but the trivial bundle doesn’t split into global

line bundles.

Next we recall the resolution in the sense of Albin and Melrose.

Definition 4.1 (eigenresolution). By an eigenresolution of S, we mean a manifold

with corners 𝑆, with a surjective smooth map 𝛽 : 𝑆 → 𝑆 such that the self-adjoint

matrices have a smooth (local) diagonalization when lifted to 𝑆, with eigenvalues lifted

to smooth functions on 𝑆.

Note in the definition we only require the the diagonalization exists locally. To

encompass the information of global decomposition of eigenvectors, we introduce the

full resolution below.

Definition 4.2 (full eigenresolution). A full eigenresolution is an eigenresolution

with global eigenbundles. The eigenvalues are lifted to 𝑛 smooth functions 𝑓𝑖 on 𝑆,

and 𝑀 , which is the trivial n-dimensional complex vector bundle on 𝑆, is decomposed

into 𝑛 smooth line bundles:

𝑆 × C𝑛 =
𝑛⨁︁
𝑖=1

𝐸𝑖

such that

𝛽(𝑥)𝑣𝑖 = 𝑓𝑖(𝑥)𝑣𝑖,∀ 𝑣𝑖 ∈ 𝐸𝑖(𝑥),∀ 𝑥 ∈ 𝑆.

We use the blow-up constructions introduced by Melrose in the book [34, Chap-

ter 5] and show that we can obtain resolutions in this way and, in particular, full

resolution if we use radial blow-up.

Theorem 4.1. The iterative blow up of the isotropy types in 𝑆, in an order compatible

with inclusion of the conjugation class of the isotropy group, yields an eigenresolution.

In particular, radial blow up gives a full eigenresolution.

4.2 Proof of the theorem

The proof proceeds through induction on dimension. We begin the proof by discussing

the first example which is the 2× 2 matrices.
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Lemma 4.2 (2 × 2 case). For the 2× 2 matrices 𝑆(2), the eigenvalues and eigenvec-

tors are smooth except at the scalar matrices. After radial blow up, the singularities

are resolved and the trivial 2-dim bundle splits into the direct sum of two line bundles.

The projective blow up also gives smooth eigenvalues, but does not give two global line

bundles..

Proof. In this case 𝑆 = 𝑆(2) =

⎧⎨⎩
⎛⎝ 𝑎11 𝑧12

𝑧12 𝑎22

⎞⎠⃒⃒⃒⃒⃒⃒ 𝑎𝑖𝑖 ∈ R, 𝑧12 ∈ C

⎫⎬⎭ ∼= R4. Thus S is

isomorphic to the product of R and the trace-free subspace

𝑆0 =

⎧⎨⎩
⎛⎝ 𝑎11 𝑧12

𝑧12 𝑎22

⎞⎠⃒⃒⃒⃒⃒⃒ 𝑎11 + 𝑎22 = 0

⎫⎬⎭ , (4.1)

i.e. there is a bijective linear map:

𝜑 : 𝑆 → 𝑆0 × R

𝐴 =

⎛⎝ 𝑎11 𝑧12

𝑧12 𝑎22

⎞⎠ ↦→ (𝐴0 := 𝐴− (𝑎11 + 𝑎22)𝐼, 𝑎11 + 𝑎22)
(4.2)

The eigenvalues 𝜆𝑖 and eigenvectors 𝑣𝑖 of 𝐴 are related to those 𝐴0 by 𝜆𝑖(𝐴) =

𝜆𝑖(𝐴0) + 𝑡𝑟(𝐴), 𝑣𝑖(𝐴) = 𝑣𝑖(𝐴0), 𝑖 = 1, 2. Therefore, we can restrict the discussion of

resolution to the subspace 𝑆0, since the smoothness of eigenvalues and eigenvectors

on 𝑆 follows.

Let 𝑧12 = 𝑐 + 𝑑𝑖. The space 𝑆0 can be identified with R3 = {(𝑎11, 𝑐, 𝑑)}. The

eigenvalues of this matrix are:

𝜆± = ±
√︁
𝑎211 + 𝑐2 + 𝑑2. (4.3)

Hence the only singularity of the eigenvalues on 𝑆0 is at the point 𝑎11 = 𝑐 = 𝑑 = 0

which is the zero matrix.

Based on the resolution formula in [34], the radial blow up can be realized as

𝑆0 = [𝑆0, {0}] = 𝑆+𝑁{0} ⊔ (𝑆0 ∖ {0}) ≃ S2 × [0,∞)+ (4.4)
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where the front face 𝑆+𝑁{0} ≃ S2. Here the radial variable r is
√︀
𝑎211 + 𝑐2 + 𝑑2. The

blow-down map is

𝛽 : [𝑆0, {0}]→ 𝑆0, (𝑟, 𝜃) ↦→ 𝑟𝜃, 𝑟 ∈ R+, 𝜃 ∈ S2. (4.5)

The radial variable 𝑟 lifts to be a smooth on the blown up space, therefore the two

eigenvalues 𝜆± = ±𝑟 become smooth functions.

Now we consider the eigenvectors of the corresponding eigenvalues 𝜆±

𝑣± = (𝑐+ 𝑑𝑖,±
√︁
𝑎211 + 𝑐2 + 𝑑2 − 𝑎11) ∈ C2. (4.6)

Similar to the discussion of the eigenvalues, the only singularity is at 𝑟 = 0, which

becomes a smooth function on [𝑆0, {0}], it follows that 𝑣+ and 𝑣− span two smooth

line bundles on [𝑆0, {0}].

If we do the projective blow up instead, which identifies the antipodal points in

the front face of S2 to get RP2, namely

𝑆0 = {(𝑥, 𝑙)|𝑥 ∈ 𝑙} ⊂ R3 × RP2 (4.7)

for which we will cover it with three coordinate patches

(𝑥1, 𝑦1, 𝑧1) = (𝑐,
𝑑

𝑐
,
𝑎11
𝑐
) ∈ R3

and the other two (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3)=(𝑑, 𝑐
𝑑
, 𝑎11
𝑑
), (𝑎11,

𝑐
𝑎11
, 𝑑
𝑎11

) are similar. The two

eigenvalues we get from here are

𝑣± = ±
√︁
𝑎211 + 𝑐2 + 𝑑2 = ±|𝑥1|

√︁
(1 + 𝑦21 + 𝑧21).

which is smooth at {𝑥1 > 0}. Similar discussions hold for the other two coordinate

patches.

However, the trivial bundle does not decompose into two line bundles as in the
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radial case. The nontriviality of eigenbundles can be seen by taking a loop in RP2

𝑙 = 𝛽−1({𝑟 = 1}) ⊂ 𝑆

which is a curve that winds twice around origin. This curve intersects the line 𝑐 =

𝑑 = 0 twice, which hits at two different places thus both 𝑎±11 = ±1 are on the

curve, and (4.6) shows that starting from 𝑣− = (0,−2) = (0,−2𝑎+11), this turns into

𝑣+ = (0,−2) = (0, 2𝑎−11), which means they are not separated by projective blow up.

Now that we have done the radial resolution for the trace free slice 𝑆0, the reso-

lution of S follows. Consider S as a 3-dim vector bundle on R with trace being the

projection map, then at each base point 𝜆, the fiber is 𝑆0 + 𝜆𝐼. The resolution is

[𝑆0 + 𝜆𝐼;𝜆𝐼] ∼= [𝑆0; 0]. Since the trace direction is transversal to the blow up, and

therefore

[𝑆;R𝐼] = [𝑆0; {0}]× R. (4.8)

And because the trace don’t change the eigenvectors, the smoothness follows.

To proceed to higher dimensions, we first discuss the partition of eigenvalues into

clusters. The basic case is when the eigenvalues are divided into two clusters, then

the 𝑈(𝑛) action of the matrices can be decomposed to two commuting actions.

Definition 4.3 (spectral gap). A connected neighborhood 𝑈 ⊂ 𝑆 has a spectral gap

at 𝑐 ∈ R, if c is not an eigenvalue of X, for any 𝑋 ∈ 𝑈 .

Note here that since U is connected, the number of eigenvalues less than c stays

the same for all 𝑋 ∈ 𝑈 , denoted by k.

Lemma 4.3 (local eigenspace decomposition). If a neighborhood 𝑈 ⊂ 𝑆(𝑛) has a

spectral gap at 𝑐, then the matrices in U can be decomposed into two self-adjoint

commuting matrices smoothly:

𝑋 = 𝐿𝑋 +𝑅𝑋 , 𝐿𝑋𝑅𝑋 = 𝑅𝑋𝐿𝑋 .

with rank(𝐿𝑋) = 𝑘, rank(𝑅𝑋) = 𝑛− 𝑘.
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Proof. Let 𝛾 be a simple closed curve on C such that it intersects with R only at -R

and c, where R is a sufficiently large number. In this way, for any matrix 𝑋 ∈ 𝑈 , the

k smallest eigenvalues are all contained inside 𝛾. We consider the operator

𝑃𝑋 : C𝑛 → C𝑛

𝑃𝑋 := − 1

2𝜋𝑖

∮︁
𝛾

(𝑋 − 𝑠𝐼)−1𝑑𝑠 (4.9)

Since the resolvent is nonsingular on 𝛾, 𝑃𝑋 is a well-defined operator and varies

smoothly with X. And the integral is independent of choice of 𝛾 up to homotopy.

First we show that 𝑃𝑋 is a projection operator, i.e.

𝑃 2
𝑋 = 𝑃𝑋

Let 𝛾𝑠 and 𝛾𝑡 be two curves satisfying the above condition with 𝛾𝑠 completely inside

𝛾𝑡, then

𝑃 2
𝑋 = − 1

4𝜋2

∮︀
𝛾𝑡
(𝑋 − 𝑡𝐼)−1𝑑𝑡(

∮︀
𝛾𝑠
(𝑋 − 𝑠𝐼)−1𝑑𝑠)

= − 1
4𝜋2

∮︀
𝛾𝑡
𝑑𝑡[
∮︀
𝛾𝑠

1
𝑠−𝑡(𝑋 − 𝑠𝐼)−1𝑑𝑠−

∮︀
𝛾𝑠

1
𝑠−𝑡(𝑋 − 𝑡𝐼)−1𝑑𝑠]

= 𝐼 − 𝐼𝐼

where using the fact that 𝑠 is completely inside 𝛾𝑡

𝐼 = − 1

4𝜋2

∮︁
𝛾𝑠

1

𝑋 − 𝑠𝐼 𝑑𝑠
∮︁
𝛾𝑡

1

𝑠− 𝑡𝑑𝑡 = −
1

4𝜋2
(−2𝜋𝑖)

∮︁
𝛾𝑠

1

𝑋 − 𝑠𝐼 𝑑𝑠 = 𝑃𝑋

and any t on 𝛾𝑡 is outside of the loop 𝛾𝑠∮︁
𝛾𝑠

1

𝑠− 𝑡𝑑𝑠 = 0

we have

𝐼𝐼 = − 1

4𝜋2

∮︁
𝛾𝑡

(𝑋 − 𝑡𝐼)−1𝑑𝑡

∮︁
𝛾𝑠

1

𝑠− 𝑡𝑑𝑠 = 0

Therefore 𝑃 2
𝑋 = 𝑃𝑋 .
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Then we show that 𝑃𝑋 is self-adjoint. This is because

𝑃 *
𝑋 =

1

2𝜋𝑖

∫︁
𝛾

((𝑋 − 𝑠𝐼)−1)*𝑑𝑠 =
1

2𝜋𝑖

∫︁
−𝛾
(𝑋 − 𝑠𝐼)𝑑𝑠 = 𝑃𝑋 .

𝑃𝑋 maps R𝑛 to the invariant subspace spanned by the eigenvectors corresponding

to eigenvalues that are less than c. We denote this invariant subspace by 𝐿 and its

orthogonal complement by 𝑅. Write X as the diagonalization 𝑋 = 𝑉 Λ𝑉 −1 where Λ is

the eigenvalue matrix and 𝑉 consists its eigenvectors as columns. Then 𝐿 is spanned

by the first 𝑘 columns of 𝑉 . Take one of the eigenvectors 𝑣𝑗 ∈ 𝐿, 𝑗 = 1, 2, ..., 𝑘,

𝑃𝑋𝑣𝑗 = −
1

2𝜋𝑖

∮︁
𝛾

(𝑋 − 𝑠𝐼)−1𝑣𝑗𝑑𝑠

= − 1

2𝜋𝑖

∮︁
𝑉 (Λ− 𝑠𝐼)−1𝑉 −1𝑣𝑗

= − 1

2𝜋𝑖
𝑣𝑗

∮︁
1

𝜆𝑗 − 𝑠
𝑑𝑠 = 𝑣𝑗.

Similarly for 𝑣𝑗 ∈ 𝑅 that corresponds to an eigenvalue greater than c (therefore 𝜆𝑗 is

outside the loop),

𝑃𝑋𝑣𝑗 = −
1

2𝜋𝑖
𝑣𝑗

∮︁
1

𝜆𝑗 − 𝑠
𝑑𝑠 = 0,

therefore

(𝐼 − 𝑃𝑋)𝑣𝑗 = 𝑣𝑗,∀𝑣𝑗 ∈ 𝑅.

Then using the projection 𝑃𝑋 we define two operators 𝐿𝑋 and 𝑅𝑋 as

𝐿𝑋 := 𝑃𝑋𝑋𝑃𝑋 (4.10)

and

𝑅𝑋 := (𝐼 − 𝑃𝑋)𝑋(𝐼 − 𝑃𝑋). (4.11)

Since 𝑃𝑋 is smooth, the two operators are also smooth. Moreover, using the fact that

𝑃𝑋 is a projection onto the invariant subspace 𝐿, we have

(𝐼 − 𝑃𝑋)𝑋𝑃𝑋 = 𝑃𝑋𝑋(𝐼 − 𝑃𝑋) = 0,
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therefore

𝑋 = 𝐿𝑋 +𝑅𝑋 .

For an eigenvector 𝑣 ∈ 𝐿,

𝐿𝑋𝑣 = 𝑋𝑣, 𝑅𝑋𝑣 = 0, (4.12)

i.e. 𝐿𝑋 equals to 𝑋 when restricted to 𝐿, similarly 𝑅𝑋 |𝑅 = 𝑋. Since 𝑃 *
𝑋 = 𝑃𝑋 , 𝐿𝑋

and 𝑅𝑋 are also self-adjoint. In this way we get two commuting lower rank matrices

𝐿𝑋 and 𝑅𝑋 .

It is natural to to have a finer decomposition when there is more than one spectral

gap in the neighborhood, and we have the following corollary.

Corollary 2. If the eigenvalues of matrices in a neighborhood U can be grouped

into k clusters, Then the matrices can be decomposed into k lower rank self-adjoint

commuting matrices smoothly.

Proof. Do the decomposition inductively. If k=2, then it is the case in Lemma 4.3.

Suppose the decomposition for 𝑘 = 𝑙 − 1 is defined. Then for 𝑘 = 𝑙, since the

eigenvalues can also be divided into 2 clusters (by combining the smallest l-1 groups

of eigenvalues together), then 𝑋 = 𝐿𝑋 + 𝑅𝑋 , with 𝐿𝑋 and 𝑅𝑋 corresponding to the

two intervals. Then 𝐿𝑋 satisfies the separation condition for 𝑙 − 1 clusters, so by

induction, 𝐿𝑋 = 𝐿1 + ... + 𝐿𝑙−1. Therefore, 𝑋 = 𝐿1 + 𝐿2 + ... + 𝐿𝑙−1 + 𝑅𝑋 is the

desired division.

Using the above Lemma 4.3 of decomposition of matrices in a neighborhood, we

can now show that locally the trivial bundle 𝑆×C𝑛 decomposes into two subspaces if

there is a spectral gap. And moreover, locally there is a product structure of two lower

order matrices. In order to see this, we need to introduce the Grassmannian. Let

𝐺𝑟C(𝑛, 𝑘) denote the Grassmannian, i.e. the set of k-dim subspace in C𝑛. Consider

the tautological vector bundle over Grassmannian:

𝜋 : 𝑇𝑘 → 𝐺𝑟C(𝑛, 𝑘), 𝜋
−1(𝑝) = 𝑉 (𝑝).
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where each fibre is a k-dimensional subspace in C𝑛, with self-adjoint operators acting

on it. Similarly, we define 𝑇𝑛−𝑘 to be the orthogonal complement of 𝑇𝑘:

𝜋 : 𝑇𝑛−𝑘 → 𝐺𝑟C(𝑛, 𝑘), 𝜋
−1(𝑝) = 𝑉 (𝑝)⊥.

Definition 4.4 (operator bundle). Let 𝑃𝑘 (resp. 𝑃𝑛−𝑘) be the bundles over 𝐺𝑟C(𝑛, 𝑘)

of the fibre-wise self-adjoint operators on the tautological bundle 𝑇𝑘 (resp. 𝑇𝑛−𝑘).

Let 𝜋 : 𝑃𝑘⊕𝑃𝑛−𝑘 → 𝐺𝑟C(𝑛, 𝑘) be the whitney sum of the two bundles. Each of its

fiber is isomorphic to 𝑆(𝑘)⊕ 𝑆(𝑛− 𝑘) when we pick a basis. There is a U(n) action

on this bundle:

𝑔 · (𝑝, (𝑝𝑘, 𝑝𝑛−𝑘)) = (𝑔 · 𝑝, (𝑔 ∘ 𝑝𝑘 ∘ 𝑔−1, 𝑔 ∘ 𝑝𝑛−𝑘 ∘ 𝑔−1)),

𝑝 ∈ 𝐺𝑟C(𝑛, 𝑘), 𝑝𝑘 ∈ 𝑃𝑘(𝑝), 𝑝𝑛−𝑘 ∈ 𝑃𝑛−𝑘(𝑝).
(4.13)

Suppose an open neighborhood 𝑈 ∈ 𝑆 satisfies the spectral gap condition. Let

𝑈(𝑛) · 𝑈 be the group invariant neighborhood generated by U, that is,

𝑈(𝑛) · 𝑈 := ∪𝑔∈𝑈(𝑛)𝑔 · 𝑈. (4.14)

Then 𝑈(𝑛)·𝑈 is open and connected, and also satisfies the spectral gap condition as 𝑈

does, since U(n) action preserves the eigenvalues. From the proof of the Lemma 4.3,

it is shown that in the neighborhood, the trivial C𝑛 bundle over 𝑈 naturally splits

into two subbundles 𝐸𝑘 ⊕ 𝐸𝑛−𝑘. And this gives a local product structure. We will

prove that, for a U(n)-invariant neighborhood, there is actually a group equivariant

isomorphism with the operator bundles defined above.

Lemma 4.4 (bundle map). If a point 𝑋0 ∈ 𝑆 satisfies the spectral gap condition,

then there is a neighborhood 𝑋0 ∈ 𝑉 ⊂ 𝑆 such that it is isomorphic to a neighborhood

in the product of lower rank matrices and Grassmannian, i.e.

𝜑 : 𝑉 ∼= 𝑉 (𝑘)× 𝑉 (𝑛− 𝑘)× 𝑉𝐺𝑟 ⊂ 𝑆(𝑘)× 𝑆(𝑛− 𝑘)×𝐺𝑟C(𝑛, 𝑘) ⊂ 𝑃𝑛 ⊕ 𝑃𝑛−𝑘.
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Moreover, if we take the neighborhood 𝑈(𝑛) · 𝑉 , it is isomorphic to a neighborhood

𝑊 ⊂ 𝑃𝑘⊕𝑃𝑛−𝑘 such that 𝜋(𝑊 ) = 𝐺𝑟C(𝑛, 𝑘) and the isomorphism 𝜑 is 𝑈(𝑛)-invariant.

Proof. From the proof of Lemma 4.3, there is a neighborhood U of 𝑋0, such that each

element 𝑋 ∈ 𝑈 are decomposed into 𝐿𝑋 +𝑅𝑋 . Moreover, it induces a decomposition

of the trivial bundle 𝑈 × C𝑛 into two subbundles:

𝑈 × C𝑛 = 𝐸𝑘 ⊕ 𝐸𝑛−𝑘 (4.15)

where 𝐸𝑘(𝑋) and 𝐸𝑛−𝑘(𝑋) are determined by the projection operator 𝑃𝑋 defined in

equation (4.9):

𝐸𝑘(𝑋) = 𝐼𝑚(𝑃𝑋), 𝐸𝑛−𝑘(𝑋) = 𝐼𝑚(𝑃𝑋)
⊥ (4.16)

Let (𝜉1, ...𝜉𝑘) be the basis for 𝐸𝑘(𝑋0). 𝐸𝑘 over 𝑈 is an open neighborhood in

𝐺𝑟C(𝑛, 𝑘). We can find a neighborhood V of 𝑋0 (possibly smaller than 𝑈) such that,

for every point in V, the k-dimensional space 𝐸𝑘 projects onto 𝐸𝑘(𝑋0). And an

orthonormal basis of 𝐸𝑘(𝑋) is uniquely determined by requiring the projection of the

first j vectors to 𝐸𝑘(𝑋0) spans (𝜉1, ...𝜉𝑗) for every j smaller than k. In this way, we

picked a basis for each fiber of 𝐸𝑘 and 𝐸𝑘 is trivialized to be a k-dimensional vector

bundle on V. Since the action of X on C𝑛 has been decomposed to 𝐿𝑋 and 𝑅𝑋 , then

with the choice of basis, the action of 𝐿𝑋 on 𝐸𝑘(𝑋) gives a 𝑘× 𝑘 self-adjoint matrix,

and by continuity, these matrices form a neighborhood 𝑉𝑘 in S(k). And the same

argument works for 𝑅𝑋 .

Therefore, we have the following map 𝜑:

𝜑 : 𝑉 → 𝑃𝑘 ⊕ 𝑃𝑛−𝑘
𝑋 ↦→ (𝐸𝑘(𝑋), (𝐿𝑋 |𝐸𝑘(𝑋), 𝑅𝑋 |𝐸𝑛−𝑘(𝑋)))

(4.17)

This map is an isomorphism between 𝑉 and 𝜑(𝑉 ). It’s injective, since the action of

the two invariant subspace uniquely determines the action on C𝑛, therefore gives the

unique operator X. The continuity of 𝜑 and 𝜑−1 comes from the continuity of the

projection operator defined in Lemma 4.1 therefore the continuity of 𝐸𝑘, 𝐿𝑋 and 𝑅𝑋
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are continuous.

Now take 𝑈(𝑛) · 𝑉 , since 𝐸𝑘 takes every possible k-subspace of C𝑛 under the

action of 𝑈(𝑛), we know that the first entry of 𝜑(𝑈(𝑛) · 𝑉 ) maps onto 𝐺𝑟C(𝑛, 𝑘).

Moreover, since the decomposition respects the action of 𝑈(𝑛), it is easily seen that,

for 𝑔 ∈ 𝑈(𝑛), 𝑋 ∈ 𝐺 · 𝑉 ,

𝜑(𝑔 ·𝑋) = (𝑔 · 𝐸𝑘(𝑋), (𝑔 ∘ 𝐿𝑋 ∘ 𝑔−1, 𝑔 ∘𝑅𝑋 ∘ 𝑔−1)) = 𝑔 · (𝜑(𝑋)) (4.18)

which means the isomorphism is group invariant.

To do the induction, we will need to define an index on the inclusion isotropy

types, so the blow up procedure could be done in the partial order given by the

index. Recall that two matrices have the same isotropy type if they have the same

"clustering" of eigenvalues. Now we define the isotropy index of a matrix 𝑋 as follows.

Definition 4.5 (Isotropy index). Suppose the eigenvalues of a matrix 𝑋 are

𝜆1 = .. = 𝜆𝑖1 < 𝜆𝑖1+1 = .. = 𝜆𝑖2 < 𝜆𝑖2+1 = ... < 𝜆𝑖𝑘−1+1 = ... = 𝜆𝑛

then the isotropy index of 𝑋 is defined as the set

𝐼(𝑋) = {𝑖0 = 0, 𝑖1, 𝑖2, ..., 𝑖𝑘−1, 𝑖𝑘 = 𝑛}.

There is a partial order of this index on 𝑆, given by the inclusion of isotropy types.

That is, if for matrix 𝑋 and 𝑌 we have 𝐼(𝑋) ⊂ 𝐼(𝑌 ) then we say that the order is

𝑋 ≤ 𝑌 . Note there is an inverse inclusion to isotropy group. The smallest isotropy

index is 𝐼(𝜆𝐼) = {0, 𝑛} while the isotropy group is 𝑈(𝑛) which is the largest. And

the largest index is {0, 1, 2, ..., 𝑛 − 1, 𝑛} which correspond to 𝑛 distinct eigenvalues,

where the isotropy group contains only identity.

The last lemma we need before the induction is the comparability of conjugacy

class inclusion and the decomposition to two submatrices, which shows the order of

resolution in Lemma 4.1 is comparable with the decomposition.
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Lemma 4.5 (Compatibility with conjugacy class). The partial order of conjugacy

class inclusion is comparable with the decomposition in Lemma 4.3.

Proof. Suppose a neighborhood 𝑉 ⊂ 𝑆(𝑛) has a decomposition in Lemma 4.3. We

need to show that, if 𝑆(𝑛)𝐼1 is the stratum of minimal isotropy type in V, then the

decomposition of this stratum corresponds to the minimal isotropy type in 𝑈(𝑘) and

𝑈(𝑛− 𝑘).
Since V satisfies the spectral gap condition, all the isotropy types in V would

be subgroups of 𝑈(𝑘) ⊕ 𝑈(𝑛 − 𝑘). Suppose the minimal stratum corresponds to

the index 𝐼 = {0, 𝑖1, ..., 𝑖𝑚} which must contain 𝑘 as one element because of the

spectral gap condition. Then the isotropy type of two subgroups are {0, 𝑖1, ...𝑘} and

{𝑖𝑗 − 𝑘 = 0, 𝑗𝑗+1, ..., 𝑛 − 𝑘}. They would still be the minimal in each subgroup,

otherwise when the two smallest elements combined it’ll give a smaller index than 𝐼

which is a contradiction.

Now we can finally prove Theorem 4.1 using the above lemmas.

Proof of Theorem 4.1. We prove the theorem by induction of the matrix size. The

2 × 2 case is shown in Lemma 4.2. Suppose the claim holds for all the cases up to

𝑛−1. Now we claim that, by an iterative blow up, we can get 𝑆(𝑛) for dimension=n,

with eigenvalues and eigenbundles lifted to satisfy the full eigenresolution properties.

As in the 2×2 example, we shall first consider the trace free slice 𝑆0(𝑛) since other

slices have the same behavior in terms of smoothness of eigenvalues and eigenbundles.

Take the smallest index 𝐼 = {0, 𝑛} with the largest possible isotropy group 𝑈(𝑛), and

the stratum in 𝑆0(𝑛) with such an isotropy group is the zero matrix. After blowing

up, we get [𝑆0; 0] as the first step.

The next smallest index is {0, 𝑘, 𝑛} where 1 < 𝑘 < 𝑛. And the strata correspond-

ing to different 𝑘 become disjoint in [𝑆0; 0] because if the eigenvalues of a matrix

𝑋 ∈ 𝑆0 satisfy 𝑘1𝜆1 + 𝑘2𝜆2 = 0, 𝑘′1𝜆1 + 𝑘′2𝜆2 = 0, then 𝜆1 = 𝜆2 = 0, which has been

blown up in the previous step. Therefore we can blow up those strata separately. For

any point 𝑋 ∈ 𝑆0(𝑛) with 𝐼(𝑋) = {0, 𝑘, 𝑛}, we can generate a neighborhood 𝑈(𝑛) ·𝑉
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as in Lemma 4.4, which is isomorphic to a neighborhood in the bundle 𝑃𝑘⊕𝑃𝑛−𝑘. Lo-

cally there is a product structure 𝑉 ∼= 𝑉𝑘×𝑉𝑛−𝑘×𝑉𝐺𝑟 ⊂ 𝑆(𝑘)×𝑆(𝑛−𝑘)×𝐺𝑟C(𝑛, 𝑘).
For every base point 𝑝 ∈ 𝑉𝐺𝑟, since the fibre is isomorphic to a neighborhood in

𝑆(𝑘)× 𝑆(𝑛− 𝑘), the resolution can be done separately to 𝑉𝑘 and 𝑉𝑛−𝑘. And accord-

ing to Lemma 4.5 the index order is preserved when decomposed into two subspaces,

so the blow up construction indexed by isotropy type inclusion can be done on 𝑉𝑘

and 𝑉𝑛−𝑘. By induction, after the full resolution of the two subspaces, 𝐸𝑘 and 𝐸𝑛−𝑘

both split into line bundles, and eigenvalues also extend to the frontface smoothly.

And since this local product structure is U(n)-invariant on 𝑈(𝑛) · 𝑉 , the splitting of

eigenbundles are actually global.

Therefore, after the resolution, we have iteratively blown up the stratum according

to isotropy indices to get

𝑆 = [𝑆; {0};𝑆𝐼1 ;𝑆𝐼2 ; ...𝑆𝐼𝑛 ], (4.19)

above which there are 𝑛 line bundles as eigenbundles and the corresponding eigenval-

ues are also smooth.
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