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Supergravity Equations

The 11 dimensional bosonic supergravity equations on M = B
7 × S

4

are defined for a metric g and a 4-form F







Rαβ = 1
12(Fαγ1γ2γ3

F
γ1γ2γ3

β − 1
12Fγ1γ2γ3γ4

F γ1γ2γ3γ4gαβ)

d ∗ F = −1
2F ∧ F

dF = 0

Result overview

All the smooth solutions in edge form with a given conformal infinity

near the Freund-Rubin solution are parametrized by a 3-form and two

functions on the bounding 6-sphere of B7.
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Background: physics

From the representation of super Lie algebra [Kac, 1978]

Eleven is the maximal dimension in order to be physical [Nahm,

1975]

Existence shown in [Cremmer-Scherk, 1977]

Lower dimension cases can be obtained through dimension

reductions that yield more smaller pieces [Nieuwenhuizen, 1985]

Recent development in relation with AdS/CFT correspondence

[Witten, 1997] [Blau-Figueroa-O’Farrill-Papadopoulos, 2002]

Generalization of Einstein equations on a manifold

Ric(g) = (n − 1)Rg

Change of signature: Lorentzian to Riemannian by complexifying

the time direction: t → i ∗ t
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Derivation of Supergravity Equations

Euler-Lagrange equations from the following Lagrangian

L(g,A) =

∫

M

RdVg − 1

2
(

∫

M

F ∧ ∗F +

∫

M

1

3
A ∧ F ∧ F ).

Three terms: classical Einstein-Hilbert action, Yang-Mills type,

Maxwell type

A is a 3-form such that F is the field strength F = dA, need not to

be globally defined
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Supergravity Equations

The 11 dimensional bosonic supergravity equations on M = B
7 × S

4

are defined for a metric g and a 4-form F

Rαβ =
1

12
(Fαγ1γ2γ3

F
γ1γ2γ3

β − 1

12
Fγ1γ2γ3γ4

F γ1γ2γ3γ4gαβ)

d ∗ F = −1

2
F ∧ F

dF = 0

Remark

If F = 0, then any Einstein vacuum solutions would solve the

equations.
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A family of product solutions

X 7: Einstein manifold with negative scalar curvature α < 0.

K 4: Einstein manifold with positive scalar curvature β > 0.

Consider M = X × K , then

Rαβ =

(

6αgX
AB 0

0 3βgK
ab

)

Let F = c VolK . The contraction part is then

(F ◦ F )αβ =
c2

12

(

−2gX
AB 0

0 4gK
ab

)

Therefore any set (c, α, β) satisfying

−c2/6 = 6α, c2/3 = 3β

corresponds to a solution.
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Freund-Rubin solution

The parameters

−c2/6 = 6α, c2/3 = 3β

give a family of solutions (X 7 × K 4, c VolK ) with

Ric(X 7) = 6αgX ,Ric(K 4) = 3βgK .

In particular, when c = 6 there is the following product solution

Definition (Freund-Rubin solution)

The Freund-Rubin Solution is defined on B
7 × S

4 as

(g0,V0) = (gH7 × 1

4
gS4 ,6 VolS4)
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Review: Poincaré-Einstein metric on the n-ball

Poincaré-Einstein metric: Einstein metric with a conformal infinity.

Definition (Conformal infinity)

For ĝ a metric on ∂M, we say a metric g on M has a conformal infinity

[ĝ] if for a boundary defining function x , x2g extends to M̄ and is

conformal to ĝ on ∂M.

Existence of Poincaré-Einstein metric near the standard hyperbolic

metric on B
n+1:

Theorem [Graham-Lee, 1991]

Let ĥ be the standard metric on S
n. For any smooth Riemannian metric

ĝ on S
n which is sufficiently close to ĥ in C2,α norm if n > 4 or C3,α

norm if n = 3, for some 0 < α < 1, there exists a smooth metric g on

the interior of M, with conformal infinity [ĝ] and satisfies Ric(g) = −ng.
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Review of the Poincaré-Einstein Proof

Proof.

Use DeTurck term φ(t ,g) to break the gauge

Compute the linearization of the operator Q = Ric−φ(t ,g) + n

Using indicial roots computation and Cheng-Yau Maximum

Principle [Cheng-Yau, 1980] to show that dQ is an isomorphism

between weighted Sobolev spaces

Then use a perturbation argument to show that the nonlinear

operator Q is a bijection between the boundary parameter and the

Einstein metric.
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Edge manifold

Edge operator theory [Mazzeo, 1991] is introduced on a compact

manifold M with boundary, where the boundary has a fibration

structure:

F // ∂M

π
��

B

Edge vector fields are regular in the interior and parallel to fibers

on the boundary. In local coordinates, Lie algebra Ve is spanned

by {x∂x , x∂y I , ∂z j }.
By duality, edge bundles are given by tensor products of {dx/x ,

dy I/x ,dz j}
The edge metric is of the form

g = a00
dx2

x2
+a0I

dxdy I

x2
+aIJ

dy IdyJ

x2
+a0j

dxdz j

x
+aIj

dy Idz j

x
+aijdz idz j .

Xuwen Zhu (MIT) 11-Dim Supergravity 10 / 29



Edge Sobolev Space

Definition (Edge Sobolev space)

On an edge manifold M, the edge Sobolev space Hs
e(M) is defined as

Hs
e(M) = {u ∈ L2(M)|V k

e u ∈ L2(M),Ve ∈ Ve(M),0 ≤ k ≤ s}

Another related Lie algebra is the b-vector field Vb [Melrose, 1992],

which is tangent to the boundary, and spanned locally by {x∂x , ∂y , ∂z}.

Definition (Weighted hybrid Sobolev space)

xδH
s,k
e,b(M) = {xδu ∈ Hs

e(M)|V i
bu ∈ Hs

e(M),Vb ∈ Vb,0 ≤ i ≤ k}
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Semi-Fredholm property of elliptic edge operator

Elliptic edge operator L =
∑

j+|α|+|β|≤m aj ,α,β(x∂x )
j(x∂y )

α(∂z)
β is

defined for the principal edge symbol

∑

j+|α|+|β|=m

aj ,α,βξ
j
1ξ

α
2 ξ

β
3

Example: Laplacian on H
2 × S

1

Theorem [Mazzeo, 1991]

If an elliptic edge operator L ∈ Diffme (M) has two properties:

(a) Constant indicial roots over the boundary;

(b) Its normal operator L0 and adjoint Lt
0 has the unique continuation

property,

then L is essentially injective (resp. surjective) on xδHk
e (M) for a weight

parameter δ ≫ 0 (resp. δ ≪ 0) with δ /∈ Λ = {Re θ + 1/2 : θ ∈ specbL},

and in either case has closed range.
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Main theorem

Define three bundles over S6 = ∂B7:

V1 := {v1 ∈ C∞(S6;
∧3

T ∗
S

6) : ∗S6v1 = iv1}.

V2 := {v2 ⊗ ξ16 : v2 ∈ C∞(S6;R), ξ16 ∈ Ecl
16(S

4)}
V3 := {v3 ⊗ ξ40 : v3 ∈ C∞(S6;R), ξ40 ∈ Ecl

40(S
4)}

Theorem

For k ≫ 0, δ ∈ (0,1), s ≥ 2, fixing a conformal infinity [ĥ] that is close

to [ĝ0] at the boundary S
6, then given any smooth section

v = (v1, v2, v3) of the bundle ⊕3
i=1Vi with a sufficiently small Hk norm,

there is a unique (g,F ) ∈ C∞(M;Sym2(eT ∗M)⊕ e
∧4 T ∗M) such that

(a) (g − g0,F − V0) ∈ x−δH
s,k
e,b (M;W ) and has a leading expansion

given by v ;

(b) (g,F ) satisfy the supergravity equation S(g,F ) = 0 with g having

the conformal infinity [ĥ].
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Gauge term

We apply the DeTurck type term: φ(g,t) = δ∗t (tg)
−1δtGtg to get the full

nonlinear system

Q : S2(T ∗M)⊕
4
∧

cl

(M) → S2(T ∗M)⊕
4
∧

cl

(M)

(

g

F

)

7→
(

Ric(g)− φ(g,t) − F ◦ F

d ∗ (d ∗ F + 1
2F ∧ F )

)

Then we get the following gauge elimination:

Proposition (Gauge elimination lemma)

If (k,H) satisfies the linearized equation dQg(k ,H) = 0, then we can

find a 1-form v and k̃ = k + Lv♯g such that dSg(k̃ ,H) = 0.
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Linearization of the gauged operator

The operator Q : W → W has the following linearization at the point

(g0,V0):

dQg0,V0
: Γ(Sym2(eT ∗M)⊕ e

∧4
(M)) → Γ(Sym2(eT ∗M)⊕ e

∧4
(M))

(

k

H

)

7→
(

∆k + LOT

d ∗ (d ∗ H + 6VS ∧ H + 6d ∗H k1,1 + 3d(7σ − 4τ) ∧ VH)

)

where the lower order term matrix LOT is as follows:

LOT =









−kIJ − 6TrS(k)tIJ
+TrH(k)tIJ + 2 ∗S H(0,4)tIJ

6k1,1 − 3 ∗S H1,3

6k1,1 − 3 ∗S H1,3
4kij + 8TrS(k)tij
− ∗S H0,4tij








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Splitting with the product structure

From the form equation

6dH∗7k(1,1)+3dS(TrH7(k)−TrS4(k))∧7V+dS∗H(0,4)+dH∗H(1,3) = 0

dS ∗ H(1,3) + dH ∗ H(2,2) + 6dS ∗7 k(1,1) = 0

dS ∗ H(2,2) + dH ∗ H(3,1) = 0

dS ∗ H(3,1) + dH ∗ H(4,0) + W ∧ H(4,0) = 0

From the metric equation:

1

2
△skIj +

1

2
△HkIj + 6kIj − 3 ∗S H(1,3) = 0

1

2
(△s +△H)kIJ − kIJ − 6TrS(k)tIJ + TrH(k)tIJ + 2H(0,4)tIJ = 0

1

2
(△S +△H)kij + 4kij + 8TrS(k)tij − H(0,4)tij = 0
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Inidicial operator: introduction

Definition (Indicial operator)

Let L : Γ(E1) → Γ(E2) be an edge operator between two vector

bundles over M. For any boundary point p ∈ B, and s ∈ C, the indicial

operator of L at point p is defined as

Ip[L](s) : Γ(E1|π−1(p)) → Γ(E2|π−1(p))

(Ip[L](s))v = x−sL(xsṽ)|π−1(p)

where ṽ is an extension of v to a neighborhood of π−1(p). The indicial

roots of L at point p are those s ∈ C such that Ip[L](s) has a nontrivial

kernel. And the corresponding kernels are called indicial kernels.
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Inidicial operator computation for dQ

In general, indicial operators are partial differential operators.

However for conformally compact case Ip[L](s) is a bundle map

Intuition: leading expansions of solutions for ODE

Example: Laplacian on hyperbolic space H
n+1, consider the

solution to

[∆− α(n − α)]f = 0

with asymptotic x−βf |∂M = h. The indicial operator in this case is

I[L](s) = −s2 + ns − α(n − α)

which gives indicial roots s = α and s = n − α. h and β must

satisfiy

[−β2 + nβ − α(n − α)]h = 0

which means either h = 0 or β must be one of the indicial roots.

So the indicial operator determines what order the asymptotic

expansion the solution can take.
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Hodge Decomposition on S
4

The linear operator commutes with ∆S4

dQ projects to eigenspaces

dQ =
∑

λ≥0

dQλ :=
∑

λ

πλ ◦ dQ ◦ πλ

Eigenvalues on 4-sphere (rescaled by 4 due to the metric)

Eigenvalues on functions: 4k(k + 3);
Eigenvalues on closed one-forms: 4(k + 1)(k + 4);
Eigenvalues on coclosed one-forms: 4(k + 2)(k + 3).
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Indicial roots result

With the Hodge decomposition, the linear blocks decompose further.

And the indicial roots are computed for each subspace.

Proposition

(a) The indicial roots of the linearized equations appear in pairs,

symmetric around the line ℜz = 3.

(b) They are separated away from L2, except three pairs

θ1 = 3 ± 6i , indicial kernel V1

θ2 = 3 ± i
√

21116145/1655, indicial kernel V2

θ3 = 3 ± i3
√

582842/20098, indicial kernel V3
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Indicial roots not on the L2 line

Proposition

For any weight s ∈ R and any orders k,l, the bounded operator defined

as

dQ : xsH
k+2,l
e,b (B7 × S

4;W ) → xsH
k ,l
e,b(B

7 × S
4;W )

is such that π≥λdQ is an isomorphism onto the range of π≥λ for some

λ ∈ [0,∞) (depending on s but not on k and l).

Using [Mazzeo, 1991]: parametrix construction for elliptic edge

operator

Id−dQ ◦ E , Id−E ◦ dQ ∈ Ψ−∞
e (M;W )

Residue bounded: for some s,p, k ,Ψ−∞
e ⊂ xsH

p,k
e,b (M) which is

contained in an L2 space.

Then use Plancherel to show decay of R≥λ for large λ, which

shows (dQ ◦ E)≥λ an isomorphism.
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Individual eigenvalues not on the L2 line

Lemma

For λ > 40, dQλ : πλxδH
s,k
e,b (M;W ) → πλxδH

s−2,k
e,b (M;W ) is Fredholm

for δ ∈ (−1,1) and any s, k. And for δ > 0, dQλ is injective on

πλxδH
s,k
e,b(M;W ) and surjective on πλx−δH

s,k
e,b(M;W ).

Use normal operator (ODE) as an isomorphism

No finite dimensional L2 eigenspaces for functions and tensors on

H
7.
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Scattering on H
n

The scattering matrix of (X ,g) is a meromorphic family S(s) of

pseudodifferential operators on X defined in terms of the behaviour at

infinity of solutions of (∆g − s(n − s)]u = 0. More explicitly, consider

the solution

[∆g − s(n − s)]u = 0,u = Fxn−s + Gxs

then the scattering matrix S(s) is defined as the operator

S(s) : F |∂X → G|∂X .

Graham and Zworski [Graham-Zworski, 2003] gave the description of

scattering matrix in hyperbolic space:

S(s) = 2n−2s Γ(n/2 − s)

Γ(s − n/2)
∆

s−n/2

S6 ,
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Individual eigenvalues on the L2 line

For λ = 0,16,40, we construct two generalized inverses

Rλ
± = lim

ǫ→0
(dQλ ± iǫ)−1.

R+ ◦ dQ = R− ◦ dQ = Id .

(R+ − R−) characterize the real-valued kernel in the base case.

Transversality: use (R+ + R−) to give a real-valued

parametrization in implicit function theorem.
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Implicit function theorem: Domain

Definition (Domain of nonlinear operator)

For a Poincaré-Einstein metric h that is close to the base hyperbolic

metric and a set of parameters v = (v1, v2, v3) in bundle V , the domain

Dh,v of the nonlinear operator is defined as

Dh,v := {1

2
(R+ + R−)f + Pv : f ∈ xδH

0,k
e,b (M;W )}.

Then we show that the nonlinear terms are all of lower order:

Lemma

The product type nonlinear terms: F ◦ F − d(F ◦ F ), F ∧ F − d(F ∧ F ),

and Ric−d(Ric) are all contained in xδH
2,k
e,b (M;W ).

Using the fact that, for k large enough and r ≥ −3, x r H
s,k
e,b(M) is an

algebra.
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Implicit function theorem

Consider the map

Qh,v · ◦(dQ0,0)
−1 : ⊕3

i=1Vi × xδH
0,k
e,b (M;W ) → xδH

0,k
e,b (M;W )

(v , f ) 7→ Qh,v ◦ (dQ0,0)
−1(f )

Using implicit function theorem, there is a continuous differentiable

map g : U1 → U2 for U1 ⊂ ⊕Vi , U2 ⊂ xδH
0,k
e,b (M;W ) such that

Qh,v · (dQ0,0)
−1(g(v)) = 0.
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Theorem

For any δ ∈ (0,1), s ≥ 2, k ≫ 0 there exists ρ > 0, such that, for a

Poincaré-Einstein metric h that is sufficiently close to the base metric

g0, for each small boundary value perturbation v = ⊕3
i=1v+

i with

‖v‖Hk
b
(M;⊕Vi )

< ρ, there is a unique solution (g,F ) ∈ Dv ,h ⊂
x−δH

s,k
e,b(M;W ) satisfying the supergravity equations S(g,F ) = 0 with

the following leading expansion

(g,F ) = (h,6 VolS4) +

3
∑

i=1

v+
i ξix

θ+
i + v+

i Si(v
+
i )ξix

θ−
i
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Some further questions

1 Physics meaning of the three pairs of parameters in physics

(Change of gravity, change of field strength)

2 The metric is Riemannian, what about the Lorentzian metric case,

i.e. AdS7 × S
4?

3 Instead of representing the spacetime by S
4, one other family of

solutions are given on AdS4 × S
7, any other solutions near that

point?
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Thank you for your attention!

Xuwen Zhu (MIT) 11-Dim Supergravity 29 / 29



Xuwen Zhu (MIT) 11-Dim Supergravity 29 / 29


	Overview
	Background
	Main theorem
	Outline the proof
	Linearized gauged equations
	Inidicial roots
	Edge calculus
	Scattering

	Nonlinear problem

