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Abstract

Detection and threshold-level discrimination of Gabor patches were studied under the conditions of noise masking, in an
attempt to isolate ‘higher-order’ or nonclassical color mechanisms. Detection contours in the equiluminant plane of cone contrast
space were measured by varying test chromaticity in the presence of chromatic masking noise. Three equiluminant noise directions
were used, in separate experiments. In the discrimination experiment, observers had to discriminate between pairs of stimuli that
were fixed at their masked threshold contrasts. A Bayesian color classifier model was used to analyze the discrimination data, with
no free parameters. There was no evidence of nonclassical color mechanisms in either the detection or discrimination data. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the central contemporary issues in color
vision is the number of psychophysical color mecha-
nisms that exist. Much experimental data is consistent
with the view that there are but four chromatic mecha-
nisms: red (R), green (G), yellow (Y), and blue (B) ,
each formed by opponent combinations of cone signals.
However, recent evidence from detection (e.g.
Krauskopf, Williams, & Heeley, 1982; Krauskopf,
Williams, Mandler, & Brown, 1986; D’Zmura, Lennie,
& Krauskopf, 1987; Gegenfurtner & Kiper, 1992), vi-
sual search (e.g. D’Zmura, 1991) and color appearance
(e.g. Webster & Mollon, 1994) tasks has been taken to
indicate the existence of additional mechanisms, termed
here ‘nonclassical mechanisms’, tuned to intermediate
hues, such as ‘orange’ or ‘blue–green’. These findings
are consistent with reports of cortical color cells that
are also tuned to noncardinal color directions (Lennie,
Krauskopf, & Sclar, 1990; Gegenfurtner, Kiper, & Lev-
itt, 1997; Kiper, Fenstemaker, & Gegenfurtner, 1997).
However, in our recent series of noise masking experi-
ments in the (L,M) plane (Giulianini & Eskew, 1998),

we found no evidence of nonclassical mechanisms (see
also Sankeralli & Mullen, 1996, 1997).

Li and Lennie (1997), using static noise masks, di-
rectly compared the equiluminant and (L,M) planes of
color space in a texture segmentation task, and found
evidence favoring nonclassical color mechanisms in the
former but not the latter plane. This difference between
color planes probably has to do with the S cones rather
than with equiluminance per se. The anatomy and
physiology of the S-cone ON pathway are very different
from that of the L and M cone ON and OFF pathways
(or S-cone OFF pathway) (Calkins, 1999; Dacey & Lee,
1994), and it might not be surprising to find that S
cones contribute to additional mechanisms. Using a
transient adaptation procedure, McLellan and Eskew
(2000) recently found psychophysical evidence for two
distinct S-cone detection mechanisms, presumably ON
and OFF pathways, that had different relative amounts
of L and M cone opponent input – as if there were
nonlinear Y and B mechanisms with asymmetric cone
weights.

The present study extends our previous noise mask-
ing experiments (Giulianini & Eskew, 1998) to include
S-cone modulations (in the equiluminant plane). In
addition to the detection procedure, we also used a* Corresponding author.

0042-6989/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 4 2 -6989 (00 )00298 -4



R.T. Eskew, Jr. et al. / Vision Research 41 (2001) 893–909894

discrimination procedure and a Bayesian classifier
model to determine how many mechanisms were active
at threshold in the equiluminant plane. The logic of the
discrimination procedure depends upon two closely re-
lated assumptions, both of which derive from Müller’s
Law of Specific Nerve Energies (Boring, 1942): (a) that
two stimuli that are detected via a single chromatic
mechanism can be made indiscriminable by adjusting
their relative strengths (univariance); (b) that two stim-
uli that are detected via two different chromatic mecha-
nisms are as discriminable as they are detectable. These
two assumptions can be summarized by saying that
chromatic detection mechanisms are ‘labeled lines’
(Graham, 1989; Watson & Robson, 1981). In addition,
to satisfy a rigorous definition a chromatic mechanism
should either have a fixed spectral sensitivity or at least
there should be some explicit rule by which the spectral
sensitivity is altered (as by adaptation, for example).
According to this definition, R and G (and Y and B)
are separate cone-opponent mechanisms, not two
halves of a single mechanism. Whether R and G (Y and
B) are symmetric (equal but opposite cone weights) is a
separate question (see below).

In both the detection and discrimination experiments,
we used noise masking to desensitize R and G, which
are by far the most sensitive mechanisms (Chaparro,
Stromeyer, Huang, Kronauer, & Eskew, 1993; Eskew,
McLellan, & Giulianini, 1999). We hoped thereby to
reveal less-sensitive nonclassical mechanisms tuned to
other directions. However, neither the detection nor the
discrimination procedure found any evidence for addi-
tional mechanisms besides the classical ones.

2. Methods

2.1. Apparatus

A Nanao T560i monitor, driven by a standard video
card with 8-bit digital-to-analog converters (DACs),
was used to display the stimuli. The mean monitor field
was circular (9.4° diameter), white (X=0.309, 0.331),
and produced a retinal illuminance of 130 Td. Two
background fields (474.4 and 575.3 nm) were optically
superposed over the monitor image and combined in a
radiance ratio to make them metameric with the moni-
tor white for a Vos-modified Judd observer (Vos, 1978).
All fields were viewed through a 2.4 mm diameter
optical pupil; total retinal illuminance was 190 or 250
Td in different experiments, with 130 Td provided by
the monitor in both cases. Head position was stabilized
with a dental impression mouth bite, and a five-element
achromatizing lens (Powell, 1981) was used to correct
for both lateral and longitudinal chromatic aberrations.
Spectroradiometric calibration of the monitor was per-
formed at 1.05 nm intervals over the spectrum. Radio-

metric calibrations of the background fields were
performed every 2 h during experimental runs. The
monitor was linearized via gamma correction lookup
tables.

2.2. Stimuli

Test stimuli were horizontal sine-phase Gabor
patches, of 1 cpd and with s=1°. Due to the contrast
resolution of the 8-bit DACs a maximum of 92.1s

was drawn on the screen. Gabor patches, rather than
spots or other unipolar stimuli, were used because
Gegenfurtner and Kiper (1992) found evidence for
higher-order color mechanisms using Gabors but not
using large square unipolar patches. Our stimuli were
flashed for 200 ms. The noise was binary; it consisted of
flickering horizontal lines, that randomly and indepen-
dently changed from one chromaticity in the equilumi-
nant plane to a symmetrically-opposite chromaticity
(on the other side of the white point). Each line
switched chromaticity with probability 1/2 at 16.8 Hz.
The noise was presented continuously throughout the
experiment run. Test and noise were spatially sepa-
rated: horizontal test lines of 2.64 min height were
interdigitated with horizontal noise lines of the same
heights (Giulianini & Eskew, 1998, Fig. 2d). The noise
lines were set to the white adapting field when no noise
was used. The high spatial frequencies created by this
‘halftoning’ procedure were invisible. The halftoning
effectively halves the size of the smallest contrast step
that the device can produce, and the adapting back-
ground produces a further reduction; both measures
provide finer control of stimulus contrast than would
be obtainable using 8-bit DACs and no background.
Test and noise strength are measured as the length of
the vector of cone contrasts produced by the stimulus
at its peak (Eskew et al., 1999; Stromeyer, Cole, &
Kronauer, 1985); however, to facilitate comparisons
with other studies in which halftoning was not used, we
halved all of the peak contrast values (as in Giulianini
& Eskew, 1998) and adjusted mechanism sensitivity
estimates accordingly.

2.3. Procedure

Detection thresholds were measured with a 2AFC
staircase method. After adapting to the steady back-
ground (including noise, if used) for 1–2 min, the
observer initiated a run of 100 two-temporal interval
trials. Two independent staircases were intermixed
within a run, which consisted of presentations of a
single test (and noise) color direction. Each trial con-
sisted of two 200 ms intervals, signaled by tones, sepa-
rated by 400 ms. Test contrast was decreased by 0.1 log
units after three consecutive correct responses and in-
creased by the same amount after a single error. All of
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the frequency of seeing data from a run was accumu-
lated and analyzed by fitting a Weibull function to
extract a threshold estimate (corresponding to 82%
detection) and a psychometric slope estimate (Watson,
1979). Data figures show mean and standard error,
based upon between-run variability. In most cases runs
occurred in different sessions on different days. Gener-
ally, three runs were used for a given test condition;
observer JH’s detection thresholds were variable and
somewhat irregular, and as many as six runs were used
for a few of her test angles (not counting replications,
plotted separately).

For the discrimination experiments, two stimuli were
fixed at their detection thresholds, and presented in the
two intervals of a trial in random order. One color
direction was designated as correct (the ‘standard’), and
the observer learned from the feedback tones how to
select the standard stimulus in practice runs. Stimuli
potentially could be discriminated either on the basis of
chromaticity or phase (i.e. two Gabor patches sepa-
rated by 180° color angle in the equiluminant plane
have the same chromaticities but their carrier sine
waves differ by 180° spatial phase — e.g. the red and
green bars are interchanged in position).

Six well-practiced observers were used, all of whom
had normal color vision; two of these observers also
participated in the experiments of Giulianini and Eskew
(1998). In the discrimination experiment, observers
were given a number of practice runs, especially in
conditions in which the discrimination was difficult, in
order to insure that performance would not improve
with practice. Final discrimination performance was
generally estimated from two to four runs.

2.4. The equiluminant plane

For four of the six observers (FG, PK, JRN, and
RTE), the (DM/M)/(DL/L) ratio at equiluminance was
determined individually; this ratio determines the angle

u of the equiluminant direction in the (L, M) plane.
FG’s equiluminant ratio was determined from detection
data: we selected the direction in the (L, M) plane of
cone contrast space that was parallel to a set of achro-
matically-detected thresholds obtained in the presence
of M-cone masking noise (data shown in Giulianini &
Eskew, 1998, Fig. 7a). This direction was close to 120°.
For PK, JRN, and RTE, a minimally-distinct border
procedure was used (Boynton, 1978). An ‘isolated edge’
(McLellan, Goodman, & Eskew, 1994), consisting of a
horizontal step function multiplied by a circular Gaus-
sian, was flashed for 200 ms every 3 s. The two halves
of the stimulus were symmetric about the origin in the
(L, M) plane, and the observer could use buttons to
adjust the angle of the stimulus in that plane. The
observers were asked to minimize the distinctness of the
centrally-viewed edge. The contrast of the edge was set
to three different levels (the maximum available, and
2/3 and 1/3 of that) in separate runs. Data were ana-
lyzed by fitting a line through the origin and through
the set of minimally-distinct settings. The (DM/M)/
(DL/L) ratio of that line was taken as the equiluminant
direction. The ratios were −1, −1.22, and −1.75 for
PK, JRN, and RTE, respectively. All of these are less
than the Judd Vl function predicts, but the angular
difference is small: the Judd observer’s equiluminant
direction is at u=118.1° in the (L, M) plane (on our
white field), while PK, JRN, and RTE were at u=135°,
129.2°, and 119.5°, respectively. For the two remaining
observers (JDP and JH), u=120° was used, just as for
FG.

The equiluminant plane for each observer is repre-
sented by a pair of orthonormal basis vectors: the S
cone {DL/L, DM/M, DS/S} {0,0,1} vector, and the
unit vector in the observer’s u direction, symbolized as
{Le,Me,0}. For example, for RTE Le=1/
4.06, and
Me= −1.75/
4.06. Angles are calculated for each ob-
server with respect to this basis set. ‘Red’ is at 0° in the
equiluminant plane, and positive S-cone modulations
are represented at 90°.
2.5. Noise

Noise directions and strengths are given in Table 1.
For the 0°¯180° and 90°¯270° directions, the contrast
was either the maximum possible, or the highest con-
trast that would produce measurable masked thresholds
in all color directions (judged on the basis of pilot
experiments). For JDP (Fig. 3) who was quite insensi-
tive along the S-cone direction, we overestimated the
useable noise contrast and were not able to measure an
S-cone threshold. For the intermediate noise angles
used for FG and PK, noise contrasts were adjusted to
produce approximately the same projection onto 1° and
181° (last column of Table 1), where we expected to
find the vectors of the R and G mechanisms (see
below).

Table 1
Noise angles and noise contrasts

Projection on 1°Observer Noise contrastNoise angle

0°¯180°FG 0.04 0.04
0.07 0.03120°¯300°

0.000.2090°¯270°

PK 0°¯180° 0.02 0.02
0.020.03145°¯325°

90°¯270° 0.16 0.00

0°¯180°JRN 0.05 0.05
0.040°¯180° 0.04JH

0.05 0.050°¯180°JDP
RTE (Fig. 5) 0°¯180° 0.03 0.03
RTE (Fig. 7) 0°¯180° 0.04 0.04
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Fig. 1. Detection contours in the equiluminant plane of cone contrast
space, for two observers (250 Td). The horizontal axis is along the
equiluminant L¯M direction (L cones positive to the right), and the
vertical axis is the S-cone direction. Open symbols are unmasked
thresholds, and filled symbols are the masked thresholds, with binary
masking noise presented along the 0°¯180° (L¯M) direction in panels
(a) and (b), the S-cone direction in panels (e) and (f), and an
intermediate direction in panels (c) and (d) (see Table 1). In the upper
four panels the horizontal axis scale is expanded by a factor of two
relative to the vertical axis; it is expanded by a factor of four in the
lowest pair of panels. The inset in panel (d) shows the correct aspect
ratio of the detection contour, for comparison. Error bars are 91
standard error based upon between-run variability. The solid lines are
the standard model predictions (standard R and G weights), as
described in the text and Table 2.

contrast thresholds are much higher along the S-cone
axis than along the L¯M axis, for briefly flashed foveal
stimuli.

The filled symbols in Fig. 1 show the masked detec-
tion thresholds. In panels (a) and (b), the noise was in
the equiluminant L¯M (0°¯180°) direction. The noise
raises the threshold for all of the color directions tested.
In particular, the long, straight-line flanks, are shifted
outward (by �8X for FG and �3X for PK), with no
change in slope. This is consistent with detection by a
pair of cone-opponent mechanisms (Section 3.3), pre-
sumably R and G. Thresholds along the S-cone axis are
also elevated, by a factor of 1.8 for FG and 2.1 for PK.
Thus, whatever mechanisms are most sensitive to S-
cone modulation are not orthogonal to the observer’s
L¯M axis.

Fig. 1(c) and (d) show the same, no-noise thresholds,
along with new masked thresholds. For FG, the noise
was at 120°¯300° in this plane; for PK, the noise was at
145°¯325°. In each case, the pattern of results is similar
to the masked pattern in panels (a) and (b): the long
flanks are pushed out with no change in slope, and
there is some masking in the S-cone directions, at least
for PK (1.3-fold for FG, and two-fold for PK). The
noises at 120°¯300° and 145°¯325° produce about the
same masking of the R and G flanks of the detection
contour as the 0°¯180° noise does, as they should if the
R and G mechanisms are near 1° and 181°, respectively
(Table 1); this result is unlikely if there are additional
mechanisms in this region of the plane.

We also examined the effect of S-cone noise, in part
to shed light on a controversial issue: whether S cones
contribute to the R and G detection mechanisms, as
they do for the red and green hue mechanisms (Boyn-
ton, Nagy, & Olson, 1983; Mollon & Cavonius, 1987;
Stromeyer & Lee, 1988). Fig. 1(e) and (f) show that
pure S-cone noise substantially masks the S-cone test,
and slightly masks the reddish/greenish tests near the
horizontal axis. This second result is consistent with a
small S-cone input to R and G (Eskew et al., 1999;
Krauskopf et al., 1982; Sankeralli & Mullen, 1996;
Stromeyer, Chaparro, Rodriguez, Chen, Hu, & Kro-
nauer, 1998). The masking of R and G mechanisms by
S cone noise is much less than the masking of Y and B
mechanisms by L¯M noise, indicating that the contri-
bution of the long-wave cones to Y and B is substan-
tially more than the contribution of S-ones to R and G.

Threshold elevations along the vertical, S-cone direc-
tion in the panels of Fig. 1 vary from a minimum of
1.3-fold to a maximum of 2.8-fold (both for FG). One
might have expected a larger variation, given that the
noise angle changed by 90° and given the high contrast
noise used in the panels (e) and (f) (Table 1). One likely
explanation for this is that the internal noisiness of B
and Y (their ‘equivalent input noise’, Pelli, 1990) is
higher than the internal noisiness of R and G. Higher

3. Results and discussion

3.1. Detection results

The open symbols in Fig. 1 show, for two observers,
unmasked detection thresholds in the equiluminant
plane. The points have been plotted twice, representing
each peak of the symmetric Gabor pattern. The hori-
zontal axis has been expanded relative to the vertical
axis, as indicated at the lower right corner of the panel.
The inset in Fig. 1(d) replots the data with an aspect
ratio of 1 to illustrate the true shape of the detection
contours: as shown before (e.g., Cole, Hine, & McIl-
hagga, 1993; Sankeralli & Mullen, 1996), unmasked
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internal noise levels in B and Y would cause their
no-noise thresholds to be high compared to R and G,
as they are, and would lessen the effect of adding
external noise (because the external noise must over-
come the internal noise to cause masking). Another
factor is the probable nonlinearity of B and Y (see
below); changing noise angle and contrast has unpre-
dictable effects on nonlinear mechanisms.

3.2. Detection model

Threshold contours were fit to the detection data
using a Minkowski summation rule (Graham, 1989;
Quick, 1974):� %

K
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�Xi �−C�1/C

=1 (1)

in which there are K mechanisms with responses Xi ; the
combination exponent C is described below. Each
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with the half-wave rectifiers defined so as to preserve
the sign of the output:

ri(x)=
!x (−1)i−1x\0

0 (−1)i−1x00
.

The Ui are mechanism sensitivities that may be inter-
preted in d % units (Eskew et al., 1999). Each vector of
weights {Wi,L,Wi,M,Wi,S} (the mechanism vector) is re-
quired to have unit length. Below we characterize these
mechanisms using the sensitivity Ui and the angle made
by the mechanism vector with {Le,Me,0}. The ‘red’ and
‘blue’ polarities are defined to be positive.

Since the Gabor stimulus contains equal and sym-
metrically opposite contrasts, the thresholds must be
symmetric about the origin. The symmetric nature of
the detection results requires that the model mechanism
vectors for each polarity (R and G, and Y and B) be
negatives of one another; thus, their estimated gains
(and their sensitivities under our conditions) are equal,

and their mechanism angles are separated by 180°. Such
a symmetry is not required for the discrimination data,
but because our discrimination model is based upon the
detection model we effectively make a ‘symmetry as-
sumption’ for the analysis of the discrimination data,
requiring equal and opposite mechanism vectors for R
and G, and Y and B. Experiments that have used
unipolar stimuli provide excellent evidence in favor of
the symmetry assumption for R and G, including the
parallelism of the two detection contours (Cole et al.,
1993; Cole, Stromeyer, & Kronauer, 1990; Giulianini &
Eskew, 1998), and their equal distances from the origin,
even under conditions of red and green chromatic
adaptation (Chaparro, Stromeyer, Chen, & Kronauer,
1995; Eskew, Stromeyer, & Kronauer, 1992; Stromeyer
et al., 1985). There is some evidence for symmetry
between Y and B (e.g. Thornton & Pugh, 1983; Cole et
al., 1993) and some against it (e.g., McLellan & Eskew,
2000; Shinomori, Spillmann, & Werner, 1999).

With the symmetry assumption, the sum of the ap-
propriate pairs (R+G, and Y+B) is a linear, bipolar
opponent channel cast as a function of cone contrasts.
For the purposes of modeling the detection data, it
would have been equivalent and simpler to use two
bipolar processes (red¯green and yellow¯blue channels)
rather than four half-wave rectified mechanisms (R, G,
Y, and B mechanisms), but the analysis of the discrim-
ination data requires having separate mechanisms for
each chromatic polarity (Section 1).

The estimated relative L and M cone input to each
mechanism is constrained by the choice of the equilumi-
nant measurement plane, so there are two free parame-
ters per mechanism (the mechanism vector length or
sensitivity, and its angle). Symmetry means that there
are no free parameters for half of the mechanisms (e.g.,
once the parameters for R are known, G’s are also
known). Thus, there are K free parameters in the model
as applied here.

Each of the K linear mechanisms generates an isore-
sponse line in a plane of cone space, orthogonal to the
mechanism vector. The combination rule of Eq. (1)
rounds the corners of the convex polygon created by
the set of such lines. A combination exponent of C=
4.0 was chosen on the basis of previous work (Cole et
al., 1993; Cole, Hine, & McIlhagga, 1994; Eskew et al.,
1999; see Appendix).

Eskew et al. (1999) reviewed several studies that
estimated the cone contrast weights for the two classical
pairs of detection mechanisms. The relative weights for
the luminance, Y, and B detection mechanisms differ
widely across observers and conditions, but there is
hardly any variation for the R and G mechanisms (e.g.
Eskew et al., 1999; Table 1). Thus, it is useful to use the
standard observer weights we proposed for the R and
G mechanisms (WR,L= −WG,L=0.70, WR,M= −
WG,M= −0.72, and WR,S= −WG,S=0.02; see Eskew
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et al., 1999; Table 2) to fix the R mechanism angle,
increasing the degrees of freedom (as done by Giu-
lianini & Eskew, 1998). With this additional constraint,

there are K−1 free parameters to be determined. For
the K=4, constrained R and G model, these free
parameters are the R sensitivity, B sensitivity, and B
angle; below we refer to this four-mechanism model
(with the fixed R and G weights but variable R and G
sensitivity) as the ‘standard model.’

The solid lines in Figs. 1 and 4(a)–7(a) represent a
best fit of the standard model to the masked detection
data; the fits were excellent, with R2\0.97 in all cases.
The standard R mechanism vector
{WR,L,WR,M,WR,S}={0.70,−0.72,0.02} has an angle
of 1.14°–1.2° in these equiluminant planes, depending
upon the observer’s Me/Le ratio, illustrating again the
tiny degree of angular variation produced by changes in
the observers’ equiluminant setting. For each of the ten
data sets, the estimated sensitivities for the R and B
mechanisms are given in Table 2, as estimated for the
standard model. Due to symmetry, R and G, and Y
and B, have the same sensitivity and mechanism vector
angle. Note that when the noise was along the S cone
90°¯270° direction, only R and G could be detected in
the data.

For each set of masked detection data in Figs. 1(a)–
(f) and 4(a)–6(a), we compared the standard model
(three free parameters; results in Table 2), against two
other models. The first of these is simply the best-fitting
K=4 model (R angle free to vary, so there are four free
parameters). The second of these models allowed an
additional pair of opponent mechanisms (K=6), with
all six parameters free to vary. We compared these
models against the standard model using an F-statistic
computed as the ratio of the two error x2 (each divided
by its degrees of freedom). In all cases but one, we
found that the standard, four-mechanism model could
not be distinguished statistically from either of these
alternatives: the slightly smaller error variances pro-
duced by the alternative models did not overcome their
reduced degrees of freedom. The exception was for
RTE (Fig. 5(a)), for whom the best-fitting R and G
mechanisms had a larger S-cone input than the stan-
dard model shown (F(10,9)=5.67, P=0.006), and for
whom the six-mechanism model performed better than
the standard four mechanism one (F(10,7)=4.41, P=
0.02). The smallest P-value for any of the other com-
parisons of the standard model versus K=6 models
was for Fig. 1(b), with F(5,2)=3.96, P=0.21. There-
fore, with one exception, our detection data do not
justify the use of additional mechanisms beyond the
classical ones on statistical grounds, and the relative R
and G weights proposed by Eskew et al. (1999) do as
well as the best-fitting ones, as also found by Giulianini
and Eskew (1998). Even for RTE (Fig. 5), the standard
model performed better than the best-fitting model in
predicting the discrimination data (next section).

To better illustrate what happens when a pair of
nonclassical mechanisms is included in the model, Fig.

Table 2
Model Parameters with RG constrained at 1°¯181°

Y & BB angleObserver R & GNoise angle
sensitivitysensitivity

FG 0°¯180° 30.2 63° 9.4
120°¯300° 12.820.2 56°
90°¯270° 110.0a3°a96.8

8.650°0°¯180°PK 35.0
145°¯325° 8.631.8 52°

6°a 53.8a71.890°¯270°

19.4 67°JRN 13.00°¯180°
0°¯180°JH 13.7 28° 12.0

RTE (Fig. 5) 20.70°¯180° 71° 12.4.3
8.60°¯180° 82°RTE (Fig. 7) 13.0

a The fit produced an additional copy of the paired R and G
mechanisms; there are no discernable Y and B mechanisms when the
noise is along the S-cone direction.

Fig. 2. A polar plot of the mechanism vectors resulting from the six
mechanism model fits to the detection data of Figs. 1, 4–6 (note: the
parameters of the standard model used to make discrimination pre-
dictions are given in Table 2, not here). Different symbols represent
different subjects and noise color directions. The angular coordinate
gives the mechanism vector direction, and the radial coordinate gives
the log10 of the mechanism sensitivity (the vector length). Only the R
and B mechanism vectors are represented; the G and Y ones are
reflected across the origin. A cluster of points lies near the expected R
direction (1°); the putative B vectors are much more scattered. Two
of the three fitted mechanisms have essentially the same vector angle
in every case, and the same sensitivity in every case but one (RTE,
open diamonds).
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2 plots all of the K=6 model fits (six free parameters).
In this polar plot, each symbol represents one member
of each of the three pairs of mechanism vectors from each
set of masked data (i.e., R, B, and a nonclassical
mechanism). The angular coordinate gives the direction
of the mechanism vector, and the radial coordinate is the
log of the mechanism sensitivity under the particular
masked conditions (i.e., this is the masked sensitivity log
Ui, not a parameter that is intrinsic to the mechanism).
Four aspects of the figure deserve comment. First, many
points lie near the 1° direction of the standard R
mechanism (the mean angle is −0.1°), consistent with
the good fits provided by the standard R and G mech-
anisms when the fits were so constrained (Figs. 1 and
3(a)–6(a)). Second, of the three mechanisms fit to each
data set, two of them are essentially identical. For RTE
(Fig. 5(a)), the only case in which the six-mechanism
model was statistically superior to the standard four
mechanism one, the two putative B mechanisms (open
diamonds, Fig. 2) have the same vector angle (41°); they
differ in sensitivity by a factor of four, however, so the
weaker mechanism could not contribute to threshold
(thus the statistical difference lies in the R and G weights,
not the B and Y ones). This graphical analysis shows that
even when the fitting algorithm was allowed to estimate
three distinct pairs of opponent mechanisms, it did not
do so, consistent with the statistical analysis reported
above. Third, the angles for the second estimated mech-
anism – the putative B mechanism – differ rather widely,
even within an observer, compared to the tightly clus-
tered R directions. The standard error of each of these
B angles (computed from the asymptotic standard errors
of the fitted mechanism weights, using the appropriate
propagation of error formula) was often quite large (up
to 285°), whereas the R angle standard errors were
generally smaller (most were less than 5°). Fourth, there
is a wide range of masked R sensitivities, but within a
condition the R mechanism is always more sensitive than
the B mechanism, even when the noise was approxi-
mately aligned with the R and G mechanism directions.

The low B sensitivity is presumably one reason why the
B direction estimates are so variable, but it also seems
likely that the B (and Y) mechanisms are nonlinear, such
that changes in noise characteristics could produce
different approximations to the mechanism vectors.
Most models of S-cone detection include strongly nonlin-
ear elements (e.g. Pugh & Mollon, 1979; Zaidi, Shapiro,
& Hood, 1992). Using noise masks that were seen only
by the L and M cones, Giulianini (1998) recently showed
that S cone threshold elevations could not be accounted
for by any linear model, and McLellan and Eskew (2000)
demonstrated different relative L and M inputs to the
mechanisms responsible for detecting S-cone increments
and decrements (a failure of symmetry as well as nonlin-
earities in B and Y).

In summary, the detection data of Figs. 1 and 4(a)–

7(a) provide no evidence for nonclassical chromatic
detection mechanisms in the equiluminant plane, despite
our efforts to use strong masking noise to reduce the
sensitivity of the most-sensitive mechanisms and permit
less-sensitive mechanisms to be revealed. A potentially
more-informative method is a discrimination procedure
used in conjunction with noise masking. By masking R
and G mechanisms, we hoped to be able to reveal the
presence of more than four labeled lines in the equilumi-
nant plane.

3.3. Discrimination results

Fig. 3 will be used to illustrate the format of the data.
Panel (a) shows the detection results as filled symbols
when masking noise was used (and, in Figs. 4–7, as open
symbols when noise was not used; JDP was only tested
with noise). Under these noise conditions, JDP was
unable to see the S-cone stimulus (Section 2), and thus
we were unable to fit the detection model of Eq. (1) to
his data. However, the lines have the appropriate slope
for the standard R and G mechanisms (Eskew et al.,
1999).

As described in Section 2, both the test and the
standard were fixed at threshold contrast (82% 2AFC
detection) for the discrimination task. Fig. 3(b) shows
JDP’s ability to discriminate threshold-level tests, in the
presence of the 0°¯180° masking noise, from a 180°
standard stimulus. This polar plot has an angular coor-
dinate representing the polar angle of the test color
direction, and the distance of the filled square from the
origin representing its discriminability from the standard
color direction. The discrimination data need not be
symmetric about the origin, and are only plotted once (at
the angle corresponding to the chromaticity of the bar
of the Gabor just above fixation). The circumference of
the gray disk corresponds to chance-level discrimination
performance. The figure shows that JDP could not
discriminate any of the four most extreme points we
measured (at 105°, 112°, 240°, and 255°) from the 180°
test direction – discrimination was always at chance.
Under these masked conditions, JDP’s thresholds reflect
only R and G mechanisms.

Similar data are shown in Figs. 4–7 for three addi-
tional observers. The arrowheads in each panel show the
‘corner’ angle of the detection contour, determined by the
intersection of the straight line threshold lines for the
mechanisms fit to the detection data (i.e., the lines of Eq.
(2a)–(2d) without the Minkowski combination of Eq.
(1)). These arrowheads are provided to make compari-
sons across panels easier; note, however, that the corner
angles in the detection contour should not necessarily
correspond exactly to those stimuli that are imperfectly
discriminated from the standards (Section 4). In panels
(b)–(d), the small open squares show model predictions
that are described in the next section.
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Fig. 3. Detection and discrimination, observer JDP (190 Td, noise contrast =0.11). (a) Detection contour, as in Fig. 1. The solid lines are drawn
by eye, with a slope appropriate to the standard R and G detection mechanisms from Eskew et al. (1999) – the small S-cone input to R and G
mechanisms determines the slope of the line. S-cone thresholds were not measurable for this observer under these conditions. Error bars are as
in Fig. 1. (b) Discrimination data, in polar coordinates. The angular coordinate is the test color angle, and the radial coordinate is discriminability
from the 180° standard, with chance (50%) discriminability at the circumference of the gray disk. For clarity, a filled square has been added at
50% discriminability at 180°, although we did not actually measure the discriminability of the standard against itself.

JRN and RTE (Figs. 4 and 5) were tested most
extensively; we varied the test direction in small steps
near the corner of the detection contour, to attempt to
find a region that was well discriminated from both the
S and L¯M direction, which would indicate that we had
isolated an additional mechanism. Fig. 4(b) shows dis-
criminability against the 90° (+DS/S) standard for
JRN. The tests at 68° through 82° could not be discrim-
inated from 90°, whereas the 45° test is well discriminable
from 90°. Conversely, Fig. 4(c) shows that the tests at
68°–90° are as highly discriminable from 0°, whereas the
45° test cannot be discriminated from the 0° direction at
all. Thus from about 68° to 90° is a spectral band that
represents a labeled line mechanism.

As shown in Fig. 4(b) and (c), the 52° and 60° tests,
which are near the corner of the detection contour
(arrowheads), are imperfectly discriminable from either
the 0° or 90° standards (at about 60%), consistent with
these stimuli being detected by the probability sum of two
mechanisms. On some trials one mechanism detects these
tests, on other trials the other mechanism detects these
tests, and on some trials both mechanisms do. On those
trials in which both the test and standard are detected
by the same mechanism, the observer cannot discriminate
them, but on the other trials the observer may be able
to do so, resulting in an intermediate level of perfor-
mance. This good correspondence between the corner
angles of the detection contour and these imperfectly
discriminable test angles is due to the good fit of the
detection model to the thresholds in panel (a) (Section 4).

The open diamond symbols in both Fig. 4(a) and (c)
were obtained in a later, separate experiment, and were
not included in the model fits to the detection data. They
were collected to be certain that none of the angles below
45° were well discriminated from 0°.

Discrimination against the 270° standard is shown in
Fig. 4(d). The 278° and 285° tests are completely indis-
criminable from 270°. The 292° and 300° tests are
imperfectly discriminated from 270° (63% and 72%
correct, respectively). Again these transitional stimuli
correspond well to a corner of the detection contour. The
315° test was well discriminated from the 270° standard.

Two Gabor stimuli separated by 180° in the plane are
identical except for a 180° spatial phase shift in their
carrier sine waves, and the results indicate that the
observers generally were able to use this spatial phase
information to make discriminations. The 180° test was
highly discriminable from the 0° standard (Fig. 4(c)), and
the 270° test is highly discriminable from the 90° standard
(Fig. 4(b)).

Using the same logic as for JRN, the data in Fig. 5(b)
and (c) show that for RTE there are spectral bands from
about 135° to about 225°, and from about 82.5° to 97.5°,
that correspond to labeled line mechanisms. The corners
of the detection contour (arrowheads at 51° and 118°)
correspond fairly well, but not perfectly, to the stimuli
that are imperfectly discriminable from both 180° and
90° standards, reflecting the imperfect fit of the detection
model in panel (a) (Section 4).



R.T. Eskew, Jr. et al. / Vision Research 41 (2001) 893–909 901

Similar results were obtained from observer JH (Fig.
6). For this observer also, the data indicate the presence
of only two labeled line mechanisms in a given quad-
rant of the equiluminant plane. Here, the correspon-
dence between the arrowheads and the transitional
discrimination performance is not very good (Section
4).

For RTE, Fig. 5(d) shows discrimination against a
115° standard, selected to be near the corner of the
detection contour. Discrimination goes from chance up

to �60% quickly on either side, unlike the broader
bands seen when the standard was at 180° or 90°, and
discriminability is still intermediate with both the 90°
and 180° tests, consistent with 115° being approxi-
mately equally detected by two mechanisms.

Comparing panels (b) and (c) within Figs. 4–6 (and
panel (d) in Figs. 4 and 6) indicates good agreement,
within a subject, of the angles at which intermediate-
level discrimination performance was obtained. This
consistency of transition angles across different stan-

Fig. 4. Observer JRN (190 Td, noise contrast =0.10). (a) Detection contour. The solid line is the standard model fit and the error bars are as
in Fig. 1. Panels (b), (c), and (d) represent discrimination data, with standard angles of (b) 90°, (c) 0°, and (d) 270°. In each panel, the angular
coordinate is the test color angle, and the radial coordinate is discriminability from the fixed standard, with chance (50%) discriminability at the
circumference of the gray disk. For clarity, a filled square has been added at 50% discriminability at the angle corresponding to the standard itself,
although we did not actually measure the discriminability of the standard against itself. To prevent clutter, error bars are not plotted, but these
bars are almost always less than twice the size of the symbols. Open squares give the prediction of the Bayesian classifier (refer text).
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Fig. 5. As in Fig. 4, but for observer RTE (190 Td, noise contrast=0.06). (a) Detection contour. Panels (b), (c), and (d) represent the
discrimination data, with standard angles of (b) 90°, (c) 180°, and (d) 115°.

dards suggests that there are fixed color boundaries,
rather than the discrimination being based upon a
distance in color space. The results in Fig. 5(d) with the
intermediate standard also show that the transition angle
is fixed, independent of the standard angle. Fixed
boundaries of this sort have been interpreted as evidence
for categorical color perception (Mullen & Kulikowski,
1990; Wandell, 1985), which in turn implies a limited
number of color mechanisms.

As shown in panel (a) of Figs. 4–6, the noise raises the
thresholds for the R and G-detected tests near 0°¯180°
by factors of about 12, 8, and 5 for JRN, RTE, and JH,
respectively. Thus, there is ample opportunity for less-
sensitive nonclassical mechanisms to be revealed in the

discrimination data. However, to ensure that we suffi-
ciently masked the R and G mechanisms and explored
the top and bottom parts of the detection contour, we
repeated the experiment with higher contrast noise for
RTE. As shown in Fig. 7(a), with this noise we did not
have sufficient test contrast in our apparatus to measure
the complete detection contour. Fig. 7(b) shows an
indiscriminability band centered on the 90° direction
(�70°–105°) which is somewhat broader than the band
obtained with weaker noise (Fig. 5(b)). About five points
could be measured on the apparent B threshold line with
the stronger noise; at no test angle was there evidence of
improved discriminability, which would have indicated
intrusion by an additional mechanism.
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In summary, the chance-level discrimination perfor-
mance over the middle portion of the plane when
using the red/green standard is inconsistent with the
presence of labeled line mechanisms besides R and G
in this region. Additional data, not shown, show an
even more R and G-dominated pattern of discrimina-
tion without the masking noise. Narrower bands
around 90° and 270° indicate two additional labeled
line mechanisms, presumably Y and B. It is clear
that, despite masking the R and G to the greatest
degree possible with our apparatus, we were unable
to isolate any additional detection mechanisms be-
yond the classical ones.

3.4. Discrimination model

The open squares in the discrimination plots show
the performance of a Bayesian classifier developed for
this task. The inputs to the model are the color an-
gles and vector lengths representing the test and stan-
dard stimuli (defined as the Gabor peak just above
fixation). The model classifier chooses between test
(‘I’) and standard (‘II’) stimuli based upon the poste-
rior probability

respond ‘‘I’’ if P(I � )VEP(II � )V
‘‘II’’ otherwise

Fig. 6. As in Fig. 4, but for observer JH (190 Td, noise contrast=0.08). (a) Detection contour. Triangles are replications, which were included
in fitting the model. Panels (b), (c), and (d) represent discrimination data, with standard angles of (b) 90°, (c) 0°, and (d) 270°. The filled circles
in panel (a) represent the stimuli that were used in the discrimination experiment.
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Fig. 7. As in Fig. 4, but for observer RTE (190 Td, noise contrast=0.09). (a) Detection contour. With the stronger noise (compared to Fig. 5),
we did not have enough test contrast to measure but a few thresholds on the vertical segments of the detection contour. Panel (b) represents
discrimination data, with a standard angle of 90°.

with Vi representing the set of binary decisions made by
each mechanism during a single stimulus presentation.
For example, suppose that in interval 1 of a given trial,
the R and B mechanisms of Eq. (2a)–(2d) detect the
stimulus, but the other two do not; then Vi=rḡbȳ
(evidence for a ‘purple’ stimulus). The classifier receives
a set of mechanism detections V, and makes the opti-
mal decision based upon those mechanism outputs by
choosing the stimulus with the greatest likelihood. De-
tails of the model are provided in Appendix A.

For each of the mechanisms of Eq. (2a)–(2d), the
mechanism vector angle and sensitivity were taken from
the detection model fits shown in Table 2, and used to
predict the detection responses of each of the four
mechanisms to test and standard stimuli. These re-
sponses were then optimally combined, according to the
Bayesian classifier (Appendix A) and used to generate
discrimination probabilities, shown as the open squares
in Figs. 4–7. Note that there were no free parameters in
these model predictions. Although the Bayesian
classifier generally performs better than the human
observers, the pattern of predicted performance is very
similar to the data. For example, in Fig. 4(b), the model
predicts that discriminability against the 90° standard
should rise gradually as the test angle is lowered from
90°, to reach an asymptote near 50°; the data follow
this pattern quite well. Fig. 4(c) shows the model per-
formance with a 0° standard; again the pattern of the
actual data is well predicted, although the model does
better than the human observer, especially near 50°.
Note that the model predicts very high discriminability
of the 180° test from the 0° standard, two stimuli which

are 180° spatial phase shifts of one another. There is no
explicit phase sensitivity in the model, but because the
input to the model is the Gabor peak just above
fixation and this peak is ‘red’ at 0° and ‘green’ at 180°,
the model correctly predicts good discrimination in this
case. The single biggest discrepancy between prediction
and data is in Fig. 6(c), in which JH was completely
unable to discriminate the 280° test from the 0° stan-
dard; this may have been due to the failure of JH to
attend to the phase of the B¯Y component of the
Gabor.

In one of RTE’s detection contours (Fig. 5(a)), the
best-fitting four mechanism model has a larger S-cone
input to R and G than the standard model that is
plotted (the best-fitting contour has vertical segments
with larger tilts). Yet when the best-fitting detection
mechanisms were used as the basis for the discrimina-
tion model, the predicted discriminabilities were some-
what less accurate than those based upon the standard
model (open squares, Fig. 5(b)–(d)). This may indicate
that RTE’s R and G cone weights are actually more
similar to the standard model’s than the best-fitting
ones despite the statistical result to the contrary (Sec-
tion 3.1); however, we did collect some additiona data
to check and these thresholds were consistent with the
original ones, so the issue remains unresolved.

Although the discrimination model is not, strictly, an
ideal observer – it is an ideal classifier of the binary
inputs provided by the sub-optimal chromatic mecha-
nisms – it is not surprising that it would do better than
a noisy human decision maker. Both the model and the
human are limited by stimulus information at the upper
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end (and in any case performance cannot exceed 100%),
and of course neither model nor human can do worse
than chance. The implication is that the model should
do better than the observers mainly at intermediate
levels of discriminability, and this is in general what
happens: as the angular difference between test and
standard stimuli increases, the predictions rise more
rapidly from chance than the actual data do, then
approach an asymptotic level of performance that is
slightly higher than the actual discriminability. Because
of this overprediction of performance at intermediate
discriminability – a curvilinearity in the scatterplots of
actual vs. predicted discriminability – the R2 values are
not high (most are about 0.4), but nonetheless the
model provides a very good description of the pattern
of discrimination performance, with no free parameters.

We have not exhaustively explored other possible
models, largely because there is no agreed-upon, com-
putable model of nonclassical color mechanisms. How-
ever, adding additional (nonclassical) mechanisms to
our model would in general cause it to predict better
performance than the four mechanism model does.
Consider the ‘purplish’ tests near 45° in Fig. 4(c), for
example. If there were a narrowly tuned mechanism
that contributed significantly to detection of these test
stimuli, but not to detection of the 0° standard, then the
model would predict better discriminability, based upon
those trials in which the test was seen only by the
‘purple’ mechanism. This would increase the dis-
crepancy between the model and the actual data in this
region. Similar considerations apply elsewhere: as a
rule, the model fit with K\4 would be worse than it is
with four mechanisms.

4. General discussion

The detection contours are well described by a com-
bination of four mechanisms, and attempting to force
the existence of an additional pair of detection mecha-
nisms fails (Fig. 2). The discrimination data of Figs.
3–7, interpreted using standard assumptions about la-
beled-line detectors, suggest that at most only four
mechanisms contribute to seeing color under our condi-
tions. Despite the masking of R and G, no stimulus was
predominantly detected by a nonclassical labeled line
mechanism: there was no intermediate band of im-
proved discriminability that would indicate the presence
of such a mechanism. This conclusion does not depend
upon the details of either the detection or discrimina-
tion models.

The Bayesian classifier model provides a very good
description of the pattern of discriminability, with no
free parameters. In general the discrimination model
performs better than the human observers, as it should.
By definition, a labeled-line mechanism can discrimi-

nate stimuli as well as it can detect them (Introduction,
Watson & Robson, 1981). Our model obeys this princi-
ple, but the obtained performance level necessarily de-
pends upon the psychophysical task. In the detection
task there was one stimulus presentation per trial,
whereas there were two presentations in each trial of
the forced-choice discrimination task, each one of
which suffices to correctly make the discrimination.
After correcting for the difference between a single
presentation (in the detection task) and the double
presentation (in the discrimination task), the best per-
formance of our model in discriminating two stimuli
that are exactly at threshold is 0.86 (Appendix A).

A related point has to do with how the contrasts of
the test and standard affect the relationship between the
detection and discrimination models. In Figs. 4 and 5,
the corners of the detection contours (arrowheads) cor-
respond well to those stimuli that are discriminated at
an intermediate level (�60%–70%), indicating detec-
tion by multiple mechanisms. In Figs. 6 and 7, the
corners agree less well with the transitional discrimina-
tion angles. This is not a failure of the discrimination
model to fit the data: note that the predicted transi-
tional discriminations in Figs. 6 and 7 (open squares)
also deviate slightly from the corner angles. The lack of
agreement with the arrowheads reflects instead small
deviations of the thresholds from the detection model
used to determine the corners. In the discrimination
experiment we set the standard and test stimuli to their
measured threshold contrast levels, which do not lie
exactly on the fitted detection contours. If, for example,
the standard stimulus is below the threshold contour
(Fig. 6(a), 90°), and the test stimulus is above it (Fig.
6(a), 80°), then, the discrimination model will predict
better discriminability due to their contrast differences
(Fig. 6(b)). To the extent that the detection model —
the continuous lines in Figs. 4–7(a) — better represents
the true 82% detection of the observer than do the
noisy individual threshold estimates, the observer’s per-
formance will reflect this contrast cue, as does the
model. The net result of these contrast variations –
either above or below threshold – in the test and
standard stimuli is that discrimination performance
need not be intermediate at exactly the corner angle of
the detection model. The discrimination model predic-
tions (open squares, Figs. 4–7) take this contrast devia-
tion into account, but the arrowheads do not. Overall,
the better the fit to the detection data, the better the
discrimination model should describe the discrimina-
tion data, and the closer the correspondence should be
between detection and discrimination models.

An important general point to be made here is that
complex patterns of detection and discrimination re-
sults can be generated by classical mechanisms alone.
An example may be seen in the inflections in the
behavior of the discrimination model with the 0° stan-



R.T. Eskew, Jr. et al. / Vision Research 41 (2001) 893–909906

dard (e.g., open squares near 300° for JRN, Fig. 4(c)).
These abrupt changes in performance come about be-
cause the mechanisms are not orthogonal, and the
psychometric functions are not linear. Under these
circumstances, the classical four-mechanism model can
produce behavior that might have been incorrectly in-
terpreted as indicating the presence of additional
mechanisms had it been seen in isolation. An
analogous point can be made with regard to the recent
results of Stromeyer, Thabet, Chaparro, and Kronauer
(1999), who showed that when a periodic test, such as
a grating patch, stimulates the paired red and green
mechanisms and the luminance mechanism approxi-
mately equally, a spatial phase interaction can distort
the shape of a detection contour, producing the ap-
pearance of nonclassical chromatic mechanisms even
when they do not exist. Demonstrating inflections in
detection or discrimination contours is not sufficient to
prove that nonclassical mechanisms are at work.

When the S cones are unmodulated, most detection
experiments have found evidence for only the classical
chromatic mechanisms (e.g. Giulianini & Eskew, 1998;
Sankeralli & Mullen, 1996, 1997; Stromeyer et al.,
1999), whereas many detection experiments in the
equiluminant plane where S cones are modulated have
concluded there are additional mechanisms (e.g., D’Z-
mura, 1991; D’Zmura & Knoblauch, 1998; Krauskopf
et al., 1986; Zaidi & Halevy, 1993). The present experi-
ments, like those of Sankeralli and Mullen, found no
hint of additional mechanisms despite using both noise
and test directions that stimulated S cones. There are
several possible reasons for the discrepancy: there
could be genuine individual differences (perhaps our
observers are ‘lower order’), and there are procedural
and experimental differences between the studies, espe-
cially with regard to the size and retinal location of the
test stimuli. For example, D’Zmura and Knoblauch
used a Gaussian blob with s=2.4° and Zaidi and
Halevy used an 8° spot, centered on the fovea; the
search task of D’Zmura used small spots scattered
over a 7.2°×7.2° region; and the color matching task
of Webster and Mollon (1994) employed two 2°
squares located just outside the central fovea. Our
relatively brief, foveated 1 cpd Gabor tests, as well as
the 1 cpd patterns used by Sankeralli and Mullen,
might have produced less activity by nonclassical
mechanisms fed by S cones. Parametric variation in
stimulus size and retinal location might be quite infor-
mative.

Color discrimination experiments have also pro-
duced discrepant results. Krauskopf et al. (1986) found
evidence for K\4 (more than the two classical oppo-
nent channels) in the equiluminant plane using a dis-
crimination task. However, using long-wavelength
lights that did not stimulate S cones, Calkins, Thorn-
ton, and Pugh (1992) showed that increments pre-

sented on a 578 nm background produced three
spectral bands, consistent with red, incremental lumi-
nance, and green mechanisms only. Also using an in-
crement threshold procedure, but with a white
background and tests that varied over the entire spec-
trum, Mullen and Kulikowski (1990) found four per-
fectly discriminable regions at threshold, labeled
‘orange’, ‘yellow’, ‘green’, and ‘blue,’ and a fifth region
(‘violet’) that was imperfectly discriminable from the
blue region. The imperfect discriminability of these
short-wave tests is consistent with there being an S-
cone input into the red and green detection mecha-
nisms (Eskew & Kortick, 1994; Ingling, 1977;
Stromeyer et al., 1998; Werner & Wooten, 1979), with
increment S-cone signals causing both redness and
blueness. The present detection and discrimination re-
sults also indicate a small S-cone input into R and G
mechanisms.

Although the discrimination results of Mullen and
Kulikowski (1990) suggest that there are only four
chromatic mechanisms, nonclassical mechanisms might
be less sensitive, and, if so, discrimination tasks per-
formed near threshold would not reveal them. The
results of Calkins et al. (1992) implying only red,
green, and luminance mechanisms held for stimuli as
much as five times detection threshold, but their stim-
uli did not modulate S cones. Our stimuli were de-
tectable by S cones, and the masking noise
substantially raised the threshold of the red and green
mechanisms, yet we found no evidence for discrimina-
tion by nonclassical mechanisms.

No one disputes that people can discriminate
suprathreshold intermediate hues, for example an or-
ange, from unique hues such as red. Thus at some
level of the nervous system there surely must be a cell
or cells that respond best to intermediate hues (and
indeed there seem to be: Gegenfurtner et al., 1997;
Kiper et al., 1997; Lennie et al., 1990). The question is
how such cells can be isolated by psychophysical meth-
ods, and, once isolated, how they may be enumerated
and characterized. In our laboratory we have yet to
find an experimental procedure that reveals nonclassi-
cal psychophysical color mechanisms, rigorously
defined, in the parathreshold regime. Perhaps these
nonclassical cells are insensitive under our conditions,
or perhaps they do not behave such as to satisfy the
criteria we use to define psychophysical mechanisms;
for example, perhaps they are not labeled lines.
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Appendix A. Bayesian color classifier

In the discrimination procedure used here, each trial
consisted of two intervals, one containing a standard
stimulus and the other a test stimulus, presented in
random order, with both stimuli fixed at detection
threshold. The observer could be correct on any trial by
correctly classifying the stimulus in interval 1 (with
probability P1), interval 2 (with probability P2), or
both; if the observer was not able to classify the stimu-
lus in either interval, we assume that he or she guessed
(with probability correct 1/2). The two intervals are
experimentally symmetric, and the treatment of each
interval includes effects of both the test and the stan-
dard (see below). Therefore P1=P2=P, and we as-
sume that the intervals are independent, so that the
probability of not correctly classifying the stimulus in
either interval is (1−P)2. Therefore, the overall proba-
bility correct is given by the complement of not guess-
ing correctly and not classifying correctly:

Ptot=1−
�

1−
1
2
�

(1−P)2. (A1)

Denote the set of possible binary mechanism deci-
sions by V, which has power 2K. This set contains all
the possible response patterns with each mechanism
giving a ‘detect’ or ‘nondetect’ output. For example, for
the four mechanisms given in Eq. (2a)–(2d),

V={rgby,r̄gby,rḡby,rgbȳ,rgb( y,r̄ḡby,r̄gb( y,…,r̄ḡb( ȳ}

with the first element representing ‘true’ detection by all
four mechanisms, the second element representing non-
detection by R and detection by the other three, etc.
For these four mechanisms there are sixteen elements
(compound responses) in V.

Denote the test and standard stimuli with roman
numerals I and II, respectively. On a given interval of a
trial, the mechanism response pattern is Vi (for exam-
ple, on a given trial the observer’s visual system might
respond rḡyb( , evidence for an ‘orange’ stimulus being
presented). Because the prior probabilities are equal,
P(I)=P(II)=1/2, the ideal classifier of a single stimu-
lus bases its decision on the posterior probability:

respond ‘‘I’’ if P(I � )VEP(II � )V (A2)

‘‘II’’ otherwise

This is a maximum likelihood classifier (see, for exam-
ple, Kay, 1998, Chapter 3).

The probability that the decision specified by (Eq.
(A2)) is correct, excluding guesses, is given by the
absolute difference �P(I�Vi)−P(II�Vi)�. To obtain the
overall ‘true decision’ performance of this classifier, we
weight each of these probabilities of being correct by
the probability that they occur, and sum over all the
response patterns in V:

P= %
2K

i=1

�P(I�Vi)−P(II�Vi)�P(Vi). (A3)

The probability that a given response pattern Vi will
occur is

P(Vi)=P(Vi �I)P(I)+P(Vi �II)P(II)

=1
2[P(Vi �I)+P(Vi �II)].

To apply the model, we must first determine the com-
pound posterior probabilities using Bayes’ rule:

P(I�Vi)=
P(Vi �I)

P(Vi �I)+P(Vi �II)
(A4)

since the priors are equal. We assume that the mecha-
nisms are independent, so that the compound probabil-
ities on the right-hand side of (Eq. (A4)) are given by
the product of the simple probabilities. For V7 from the
above example, P(V7�I)=P(r̄ �I)P(g �I)P(b( �I)P(y �I).
Note that we assume the R and G mechanisms are
stochastically independent – the noises in each mecha-
nism are uncorrelated – but because of the symmetry
and high-threshold assumptions the stimulus can never
produce a response in both polarities of a channel
simultaneously (so, P(r �I)P(g �I)=0 for example). These
assumptions imply that many elements of V have zero
probability, but the general model need not include the
symmetry assumption.

The probabilities of mechanism detection conditional
upon stimulus (P(r �I), etc.) are determinable from the
model fits to the detection thresholds, with two assump-
tions. First, we have to determine the actual perfor-
mance level that is relevant for the single interval
procedure, and second, we must make assumptions
about the psychometric slope.

As an initial step towards the first issue, we must
define the test and standard stimuli used as inputs to
the discrimination model, and there are two possible
ways to do so. We could use the actual threshold values
determined in the detection procedure (the actual stim-
uli presented in the discrimination experiment). Alter-
natively, we could fit the detection model and use the
model to predict the threshold values. The first method
uses the data points in panel (a) of Figs. 4–7 as the
model inputs. The second method uses points on the
continuous lines in panel (a) of those figures as the
model inputs. A case can be made for either method,
but we have used the first one. Using the second
approach produces more accurate predictions in some
cases (especially for JRN) and worse ones in others
(especially for JH); for all the observers the second
approach would cause the model predictions of transi-
tional discriminability to correspond more closely to
the arrowheads that mark the detection contour con-
tours (Section 4). To the extent the detection model fits
the thresholds, the two approaches are equivalent.

Next we must determine the relationship between the
two-interval, single-presentation detection procedure



R.T. Eskew, Jr. et al. / Vision Research 41 (2001) 893–909908

and the model analysis of the discrimination task
(which is necessarily based upon the analysis of a single
stimulus presentation; two such presentations occur in
each trial). A stimulus for which detectability was 0.82,
the level used to define threshold in the 2AFC proce-
dure, should be less detectable in a single interval. In
general, d % in a 2AFC procedure is 
2 larger than d % in
a single-interval yes/no procedure (e.g., Green & Swets,
1974), and this relationship was used here to define the
threshold detectability in the application of the model.
Thus, d %2AFC=1.29 corresponds to d %YN=0.91, or a
probability of 2AFC detection of 0.74. This last value
was ‘corrected for guessing’ to 0.48, to give the ‘true’
probability of detection at single-interval detection
threshold by any mechanism. For example, we assumed
that where the detection model indicated a stimulus was
detected by the R mechanism alone, P(r �I)=0.48, and
P(r̄ �I)=0.52. This 
2 correction sets the highest level
of discriminability achieved by the model. With the 
2
correction, the model discriminates between two stimuli
that are detectable exactly 82% of the time (according
to the detection model) at 0.86; the predicted discrim-
inability in Figs. 4–7 go up as high as 1.00 because the
test or standard or both were not exactly at 82%
detection threshold according to the detection model
(Section 4).

Last we must make assumptions about the shape of
the psychometric function for detection. The slope of
the Weibull psychometric function for R and G detec-
tion mechanisms is :2.0, at least when relatively low
spatial and temporal frequencies predominate in the
test (Eskew, Stromeyer, & Kronauer, 1994; Eskew,
Stromeyer, Picotte, & Kronauer, 1991), and Y and B
mechanisms are similar (Watanabe, Smith, & Pokorny,
1997). However, using 2.0 as the exponent in the
Minkowski combination of Eq. (1) to model the detec-
tion data would have produced poor results: as noted
previously (Cole et al., 1993; Eskew et al., 1999), mea-
sured chromatic detection data are too ‘squared off’ in
the corners to be consistent with a probability sum of
mechanisms with slope two (which would be ellipses).
Therefore, we used a value of four for the detection
combination exponent and, for consistency, as the as-
sumed psychometric slope in the discrimination model.
Using a lower slope improves the fit of the model to the
discrimination data, but only slightly.

In this model we used the high-threshold assumption
to make corrections for guessing, although high-
threshold theory is clearly wrong (e.g. Graham, 1989).
We regard these corrections as approximations to the
correct analysis, which would use the decision variable
and criterion of signal detection theory. The fundamen-
tal elements of our discrimination model, including the
combination of binary chromatic mechanism decisions,
can be compatible with signal detection theory (see, for
example, Pelli (1985) for related discussion).
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