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The temporal properties of the red—green chromatic mechanism were studied with red and green
equiluminant flashes of 1deg diameter presented in the center of a bright (800-3000 td) yellow
adapting field. A subthreshold 200 msec red or green flash makes an immediately subsequent,
suprathreshold yellow luminance flash appear tinged with the complementary color. The chromatic
flash also makes a subsequent chromatic flash of the same hue harder to detect and identify, and makes
a flash of the opposite hue easier to detect and identify. These results indicate that the response of
the red—green mechanism changes polarity during its time—course, suggesting that the chromatic
temporal impulse-response function has a negative lobe. Pairs of chromatic pulses were used to
estimate the shape of the chromatic impulse-response. The estimated impulse—response function has
a zero crossing near 90 msec, followed by a long, shallow negative lobe, We also measured
threshold-duration functions; the critical duration for the chromatic and luminance flashes is about
95 and 45 msec, respectively. Chromatic sensitivity (measured in cone contrast units) is 10 times
greater than luminance sensitivity for long durations, and is 3 times greater for all durations less than

45 msec.
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INTRODUCTION

Chromatic mechanisms are often characterized as
temporally low pass, unlike the bandpass luminance
mechanism (Boynton, 1979; Kelly, 1975). However, at
moderate to high adaptation levels, sensitivity for
red—green flicker declines slightly at frequencies below
about 1.5Hz, suggesting that chromatic mechanisms
may be weakly bandpass (Kelly & van Norren, 1977;
Swanson, Ueno, Smith & Pokorny, 1987; DePriest, Sclar
& Lennie, 1988).

A bandpass mechanism has a multiphasic temporal
impulse-response function (IRF), while a low-pass
mechanism has a monophasic impulse-response
function. Burr and Morrone (1993) and Uchikawa and
Tkeda (1986) used a two-pulse technique to estimate the
chromatic IRF, and found it to be monophasic.
However, their low retinal illuminance (~ 200 td) might
have reduced inhibition and eliminated the negative
lobe. This idea is supported by the results of Swanson
et al. (1987), who observed that chromatic flicker
sensitivity is bandpass at 900 td, but is low-pass below
90 td. Luminance flicker sensitivity also shifts from
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bandpass to low-pass at low adapting levels (Kelly,
1961). However, Uchikawa and Yoshizawa (1993)
recently found evidence for a biphasic chromatic
response at 10 td with a two-pulse method.

Detection of a red or green chromatic flash can be
facilitated by a coincident, suprathreshold luminance
flash, or pedestal (Cole, Stromeyer & Kronauer, 1990;
Eskew, Stromeyer, Picotte & Kronauer, 1991). An
observation wth the pedestal (Eskew, Stromeyer &
Kronauer, 1994) suggests that the chromatic IRF is
biphasic. Detection of a 600 msec chromatic flash was
facilitated by a 30 msec luminance pedestal presented
just after the chromatic onset. The facilitation declined
slightly as the luminance flash was delayed further into
the chromatic stimulus. A linear mechanism that has a
biphasic IRF responds to a chromatic step with a
response that rises until the time of the zero-crossing,
and thereafter declines as integration is carried into the
negative portion of the impulse-response. The chromatic
facilitation follows this pattern. In the present study,
presenting a chromatic flash (even a subthreshold flash)
just prior to the luminance pedestal tinges the pedestal
with the opposite hue, suggesting a facilitation of the
negative chromatic off-response.

We use moderately high adapting levels. First, we
show the existence of the negative lobe of the IRF using
the luminance pedestal and a chromatic flash. Next, we
measure threshold-duration functions for chromatic and
luminance tests. Finally, we estimate the shape of the
chromatic IRF with pairs of chromatic pulses.
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METHODS

Apparatus

Stimuli were produced with an eight-channel
Maxwellian view (Cole et al, 1990). The stimulus
consisted of coincident, 1deg central test disks of red,
green and yellow, and matched contiguous annuli
(6.2 deg outer diameter), each composed of light from
light-emitting  diodes (LEDs) passed through
interference filters (8-10 nm half-bandwidth). These
components were superposed on an intense yellow
adapting field of 6.2 deg diameter. Between trials, the
stimulus appeared as a uniform yellow disk, since the
edge between the test and the surround was not visible.
The test area was fixated with the aid of two dark dots
separated by 3 deg, placed above and below the test area.
The total illuminance was 790-3000td in different
experiments, with the LEDs contributing 250-400 td.
The spectral centroid of the filtered red, green, and
yellow LEDs was 671, 551 and 579 nm, respectively. The
yellow main field metamerically matched the yellow
LED and the sum of red and green LEDs.

Stimulus representation

The test LEDs were modulated about their means to
produce any desired combination of incremental and
decremental flashes. Green chromatic flashes were
produced by simultaneous incremental green and
decremental red flashes, and red chromatic flashes were
produced by inverting the polarities. The luminance
pedestal was produced with the yellow LED.

The Smith and Pokorny (1975) cone fundamentals are
used to represent the stimuli in the cone contrast coordi-
nates (AL/L, AM /M). For example, L-cone contrast
represents the change in L-cone quantal catch produced
by the test flash (AL), normalized by the mean L-cone
quantal catch (L) owing to all the steady components.
The cone contrast metric takes account of the spectral
overlap of the L and M cones, and thus threshold
differences for luminance and chromatic stimuli refiect
differences in post-receptoral mechanisms. In Fig. 4,
incremental and decremental luminance flashes are
defined as vectors of polar angle 45 and 225 deg, while
green and red chromatic flashes are defined as 135 and
315deg (second and fourth quadrants). Stimulus
contrast is specified by the vector length in cone contrast
space, [(AL/LY + (AM/M)'2

Calibration

The mean radiances of the lights were calibrated each
session. The test light intensities were modulated by
current amplifiers, controlled by 12-bit DACs. The
current amplifiers contain low-pass filters to eliminate a
small, brief light overshoot at flash onset. These filters
slightly elongate the light pulses. The left side of Fig. 1
shows nearly-identical oscilloscopic tracings for nominal
10-msec red and green pulses. The right side shows a
rectangular pulse of the same area and peak amplitude
as the actual pulse; this equivalent pulse is 11 msec long.
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General procedure

Thresholds were measured with a temporal two-
alternative forced-choice (2AFC) method, with the two
intervals separated by 400 msec. The test color was
typically either red or green throughout a run of 150-200
trials. Tones signaled the intervals and provided re-
sponse feedback, except in the first experiment where
there was no feedback.

For each threshold estimate, frequency-of-seeing data
were obtained with two or more Quest staircases
(Watson & Pelli, 1983) randomly interleaved in a run.
On each trial, the test amplitude was the current estimate
of the 82%-correct point, with a random jitter of
+0.1 log units. The frequency-of-seeing data for a single
test condition (400800 trials) were fitted by the Weibull
function, using a maximum likelihood criterion:

P(a)=1-;exp[ —(a/d)] ()

where P(a) is the probability of a correct response for
a stimulus of contrast «, § is the probability of a correct
response by chance, & (the threshold) is the value of a for
82% correct, and f is the slope parameter. A 90% x°
confidence interval was calculated for the fit.

Thresholds were also measured for chromatic identifi-
cation. A red or green chromatic flash was presented on
a trial and the observer made a relative judgment,
choosing, for example, the redder-appearing interval—
the interval containing the red test when it was pre-
sented, and the interval nor containing the test flash
(the blank interval) when the green test was presented
(Cole et al., 1990). Without requiring the observer to
make a relative judgment of this sort, adaptive
procedures like Quest can be severely affected by re-
sponse bias.

RESULTS

The negative chromatic lobe

We first show that the response to a weak chromatic
flash reverses sign over time, indicating that the
chromatic IRF has a negative lobe.

We used a luminance pedestal to facilitate any
opposite-colored rebound at the end of the chromatic
flash. A 200 msec luminance flash of 2 x threshold was
presented in both trial intervals. Presented alone, the
luminance pedestal appeared yellow—the same hue as

Actual Equivalent
0 20 11
msec msec

FIGURE I. Two oscilloscope tracings (left), of red and green LED
nominal square light pulses of 10 msec. The 11 msec rectangular pulse
on the right has the same peak and integral as the pulse on the left.
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FIGURE 2. Chromatic identification thresholds, expressed as d’. The
squares and triangles represent judgments of the hue induced into an
achromatic pedestal by a weak chromatic flash (of the contrast
specified by the abcissa) immediately preceding the pedestal. Squares
are for a green flash, triangles for a red one. Observers selected either
the greener- or redder-appearing pedestal, in different runs. The weak
chromatic flash made the pedestal appear tinged with the opposite hue
(see text). Circles (b) are for standard chromatic identification of the
chromatic flash itself. The adapting field was 3000 td.

the field. In one randomly selected interval of each
trial, the luminance pedestal was immediately
preceded by either a 200 msec red or green chromatic
flash. If there is a chromatic off-response it may tinge
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the pedestal with the hue opposite to the chromatic
flash.

Figure 2 plots d’ for chromatic identification as a
function of the contrast of the chromatic flash. The task
was to judge the relative hue of the two luminance
pedestals in each trial. In separate runs the observer was
instructed to choose either the redder-appearing pedestal
(red criterion) or greener-appearing pedestal (green
criterion). First consider the squares, which show resuits
for trials where the chromatic flash was green. The
response was scored correct when the observer selected
the interval containing the green chromatic flash. As the
green flash contrast is raised, d’ rises when the observer
is told to choose the red-appearing pedestal (red
criterion, solid squares). Using exactly the same stimuli,
d’ also rose when we switched to the opposite green
criterion (open squares), but this is because we also
switched the scoring rule so the interval not containing
the green chromatic flash was judged correct. Thus for
both criteria, the green chromatic flash makes the ped-
estal appear redder. An analogous treatment of the
results of trials with the red chromatic flash shows that
red flashes make the pedestal appear green.

For the squares and triangles, the observer ignored the
chromatic flash if it was seen, attempting to judge the
hue of the pedestal. The circles in Fig. 2(a) show
chromatic identification thresholds for the chromatic
flashes themselves measured with the same stimulus
conditions (the pedestal was present). Flashes that are
themselves very poorly visible (flashes near 0.002, for
which d’ = 0) nevertheless affect the color of the pedestal
(squares and triangles). The pedestal may act to mask
the on response to the chromatic flash (Eskew er al.,
1994), while facilitating its off-response.

We next measured the effect of the chromatic flash on
a second chromatic flash (200 msec) presented immedi-
ately after the first flash. The first, or conditioning, flash
was presented in both trial intervals, and was immedi-
ately followed in one interval by the second flash, the test
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FIGURE 3. Chromatic identification (a) and detection (b) of a 200 msec red or green chromatic test flash, as a function of

the contrast and color (red or green) of the immediately preceding 200 msec conditioning flash (abscissa). Only the confidence

interval around the left- and right-most points are drawn (the interval was smaller than the symbo! in one case). The adapting
field was 3000 td.
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FIGURE 4. Detection thresholds for 11msec flashes, plotted in

(AL/L, AM|M) coordinates. Luminance thresholds are plotted at 45

and 225deg (dashed arrows); chromatic thresholds are fit with a

straight line. The approximately-equiluminant green test direction used

in the other experiments is indicated by the solid arrow. The adapting
field was 990 td.

flash. Figure 3 shows chromatic identification thresholds
[Fig. 3(a)] and detection thresholds [Fig. 3(b)] for the test
flash as a function of the color and contrast of the prior
conditioning flash. The conditioning flash strength is
represented in 4’ units, indicating its visibility (measured
separately). The test flash is harder to detect and identify
when preceded by a same-colored conditioning flash, but
both tasks are facilitated by an opposite-colored
conditioning flash. Even very weak conditioning flashes
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are effective. Using incremental monochromatic flashes
rather than the approximately-equiluminant flashes used
here, Stromeyer, Khoo, Muggeridge and Young (1978)
observed a similar facilitation effect with a sequential
green—red pair of lights.

This first series of experiments indicate that the
response {0 a 200-msec chromatic flash changes polarity
over its time—course. This tinges the luminance pedestal
with opposite hue and facilitates a subsequent chromatic
flash that is opposite in hue to the first flash. Linearity
ought to hold for these weak stimuli, and thus the
change in chromatic polarity indicates that the
chromatic IRF has a negative lobe.

Evidence for chromatic detection of 11 msec pulses

Short pulses will be used to measure the chromatic
IRF. First we show that these brief pulses are detected
by the red—green mechanism, by measuring a detection
contour and threshold-duration functions.

The detection contour in Fig. 4 shows thresholds for
11 msec flashes (Fig. 1) that modulate the L and M cones
in different ratios. The fitted straight line has a slope near
unity (1.06), indicating detection by a mechanism that
responds to AM /M — AL/L. The luminance thresholds
at 45 and 225deg are about 3 times higher than the
chromatic threshold at 135 deg (dashed vs solid arrows),
showing that the chromatic mechanism is more sensitive
than the luminance mechanism for very brief flashes
(Stromeyer, Cole & Kronauer, 1985; Chaparro,
Stromeyer, Huang, Kronauer & Eskew, 1993).
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FIGURE 5. Thresholds (left) and psychometric slopes, f (right), for positive luminance flashes and green chromatic:flashes
as a function of duration. For the smaller symbols, the adapting field was 1150 td. Larger symbols (including all of the § values)
were measured using the method of constant stimuli, with a 3000 td adapting field.
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The left panel of Fig. 5 shows luminance and
chromatic thresholds as a function of duration. The
straight lines, of slope — 1, show that Bloch’s law critical
duration is 40-50 msec for the luminance flash, and
90-100 msec for the chromatic flash, confirming the
well-known longer integration for chromatic signals
(Regan & Tyler, 1971a; Schwartz & Loop, 1984; Smith,
Bowen & Pokorny, 1984). For long flashes, the
chromatic mechanism is ~ 10 x more sensitive than the
luminance mechanism, and this ratio drops to 3 x for
flashes less than 40 msec. This chromatic advantage will
obtain at all shorter durations, .assuming Bloch’s law.
The higher cone contrast sensitivity for chromatic flashes
could reflect greater spatial summation for chromatic
stimuli or lower gain iri the luminance channel; we found
a similar chromatic advantage when thresholds are
analyzed in cone contrast energy units (Chaparro et al.,
1993), which are unaffected by spatial integration
differences.

The right panel in Fig. 5 shows the psychometric
function slope, f§, measured with the method of constant
stimuli, for luminance and chromatic flashes of three
durations. The slopes are steeper for luminance than
chromatic flashes (Cole et al., 1990; Stromeyer, Lee &
Eskew, 1992), and the slopes tend to decrease with
duration, perhaps reflecting lower detection uncertainty
at longer durations (Lasley & Cohn, 1991).

Two-pulse measurements

Pairs of 1l msec chromatic pulses were used to
measure the chromatic IRF. The two pulses were
separated by an interstimulus interval (ISI) of § msec;
the contrast of the first and second pulses is g, and a,.
Green and red pulses are denoted by, respectively,
positive and negative values of a; the figures show the
absolute value of the contrast of the second pulse, «,.
The task was to detect the pulse pair, presented in one
of the trial intervals; the other trial interval was blank.
Two procedures were used to determine threshold: either
a, was fixed at a low contrast and a, was varied, or the
contrast of both pulses was varied together, with
lao| = |ay|.

Fixed first pulse. The contrast of the first pulse, a,, was
fixed, and the contrast of the second pulse, @,, was
varied. When the contrast of the second pulse is very
low, the detection probability for the pulse pair
approaches the detection probability for the first pulse
alone [cf. equation (1)]

P(ay) =1—[1 -1 exp[ — (a,/@)’] = constant. (2)

P(ay) was estimated from data for a single red or green
pulse measured over several months; Table 1 (middle)
shows the contrast of the first pulse, q,, and its detection
probability, P(a,).

The detection probability of the pulse pair is given by

Pyajla,) =1 —[1 — P(ay)]-expl — (a,/d;)"] (3)

where ¢ is the ISI between the two pulses. Equation (3)
may be regarded simply as a means of fitting the
measured frequency-of-seeing data to estimate the 82%
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TABLE 1
Observer Mean threshold for single 11 msec flash
RTE 0.028 (0.004)
CFS 0.036 (0.002)
First flash color el Pla,)
First two-pulse experiment
RTE Red 0.011 0.59
Green 0.011 0.59
CFS Red 0.011 0.53
Green 0.011 0.53
Second two-pulse experiment
RTE Red 0.020 0.67
Green 0.020 0.75
CFS Red 0.024 0.65
Green 0.024 0.66

detection point. Although equation (3) is written in the
form of a probability sum of independent detection of
the two pulses, the two pulses are not detected indepen-
dently at small ISIs. The responses to the two pulses will
interact deterministically and thus affect the estimated
values of 85 and a;; this deterministic interaction is what
we wish to measure (if the two pulses are independent
except for probability summation, and if the high
threshold assumption holds, then the thresholds a,
would all be equal to a, the threshold for a single pulse
alone). Owing to the difficulty in estimating # (Maloney,
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FIGURE 6. Detection thresholds (|@|) as a function of the ISI
between two 11 msec chromatic pulses. The legend indicates the pulse
colors. Different ordinate scales are used for the two observers to better
reveal the time-varying features of the data. The bar at the right depicts
the average 90% confidence interval. The arrow indicates the average
threshold for a single 11-msec pulse, and the solid circle shows the
intensity of the first, fixed pulse (Jay). The adapting level was 1200 td
(RTE) and 1150td (CFS).



3132

1990), the results are based only on the threshold
parameter, a,, with each observer’s average slope value
used for f.

Figure 6 shows thresholds for both green—green and
red—green pulse pairs. A single ISI was used in each run.
The threshold a; at each ISI was estimated with equation
(3). At small ISIs, the threshold for the green—green pair
is lower than the red—green pair, but this relationship
reverses at longer ISIs—at about 90-125 msec for RTE,
and 50-100 msec for CFS. The reversal reveals a nega-
tive lobe of the IRF. However, the effect is small. The
vertical bar at the right indicates the average 90% yx*
confidence interval of single threshold estimates.

Thresholds for observer CFS tend to generally rise at
long ISIs, where there is a long delay between the
warning tone signal and the second pulse. The threshold
rise could be caused by eye movements or temporal
uncertainty. To control for this, we next presented the
second (test) pulse always 450 msec after the warning
tone (the interval between the warning signal and the
weak first pulse was varied). Five ISIs were intermixed
within a run. The intensity of the first pulse, a,, was
again fixed, and the pulse polarity was constant in each
run. The contrast and detectability of the first pulse are
given in Table | (bottom).

Threshold contrasts of the second (test) pulse |&,} are
shown in Fig. 7; open symbols indicate pulse pairs of the
same color and solid symbols indicate opposite colors, In
the left panels the test pulse was green, and in the right
panels it was red. In three of the four cases, the two
functions appear to cross, although again the effect is
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small relative to the average confidence interval (shown
at right). CFS’s thresholds tend to be higher in Fig. 7
than Fig. 6; this could be a result of intermixing the ISIs.

To better show the crossover, the difference between
the two functions in each panel of Figs 6 and 7 is shown
in Fig. 8, Use of this heterochromatic-homochromatic
difference helps control for small changes in baseline
sensitivity across ISIs. For CFS, the crossover occurs at
an ISI of 60 msec, while it does not occur until 90 msec
for RTE.

Variable first pulse. In the previous two experiments,
the contrast of the first pulse was fixed and that of the
second was varied. We next equate the pulse contrasts
lagl=la,|, and then simultaneously vary the contrasts
together to find threshold. This procedure (with the two
pulses in a fixed ratio) is frequently used in luminance
two-pulse experiments (Rashbass, 1970; Watson, 1986),
and was used by Burr and Morrone (1993) and
Uchikawa and Yoshizawa (1993) with chromatic pulses.
The experiment was like the last one in terms of timing
and intermixing the ISTs. The first pulse was green or red,
and the second was green.

Thresholds (Fig. 9, left panels) were derived by fitting
equation (1) to the frequency-of-seeing data. For RTE,
the two threshold functions apparently cross at about
75 msec, although the effect is quite small; for CFS there
is no clear crossover. The hetero-homochromatic differ-
ence is plotted on the right. The larger symbols on the
right show a replication at a slightly lower adapting level
(790 td), with heterochromatic and homochromatic
pulse pairs intermixed within a run. These data show
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FIGURE 7. Detection thresholds (}4,]) as a function of the interval between two 11 msec chromatic pulses. The second pulse

was green in the left panels, and red in the right ones. The second pulse occurred 450 msec into the 2AFC interval, and the

five ISIs for each curve were intermixed in single runs. Arrows and solid circles as in Fig. 6. The adapting level was 1200 td
(RTE) and 8301td (CFS).
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FIGURE 8. Threshold difference between heterochromatic and homochromatic flash pairs as a function of ISI. Circles are

from Fig. 6, and squares and triangles are from Fig. 7 (open squares and solid circles are for a green second pulse, open triangles

for a red one). The curves are drawn by eye near the averages of the points. The curves approximate the shape of the IRF
assuming a peak detector.

that the crossover, although weak, appears to be replica-
ble. Note the different depths of the negative values in
Figs 8 and 9. As discussed later, the most likely reason
for this difference is that the present experiment, |a,| is
generally larger than in the previous experiments. The
observer might often base his judgment on the large first
pulse in the present experiment, and thus less crossover
might be observed.
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DISCUSSION

The response to a 200 msec chromatic flash changes
polarity during its time—course. A very weak red or green
flash causes a subsequent luminance pedestal to appear
tinged with the opposite color. The chromatic flash also
makes a subsequent chromatic flash of the same color
harder to detect and identify, and makes a subsequent

-
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FIGURE 9. Left panels: detection thresholds for pulse pairs (red—green or green-green) as a function of ISI. The threshold
contrast is plotted as || or |4,|, since the two members of each pair were equated in contrast. The arrow indicates the threshold

of a single pulse. The adapting level was 990 td. Right panels:

difference between the two functions plotted on the left. Larger

symbols indicate replications at 790 td: squares are for a green second pulse, triangles for a red second pulse. In the bottom
right panel three symbols coincide at 150 msec. Even assuming peak detection, the curves on the right do not approximate
the shape of the IRF.
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chromatic flash of the opposite color easier to detect and
identify.

This change of polarity was confirmed with pairs of
11 msec chromatic pulses, especially when the first pulse
was weak and fixed in intensity.

Modeling the impulse—response function

Let y(z) represent the response to the equiluminant
stimulus x(¢). Then for weak stimuli for which we may
assume linearity

y()= jfh(r)x(t —1)dr.
0

In our experiments x(z) consists of two 11 msec pulses
separated by é msec. We denote the response to this
stimulus by y;(¢). We assume that the 11 msec pulse is
brief enough to serve as a true impulse, and so the
response to two impulses is simply

yilt) = ach(t) + ah(t — 9)

where 4 is the IRF we wish to estimate.

The IRF can be modeled as the difference of two
n-stage filters. Responses based on the initial rising
portion of the IRF could not be measured (sce
Appendix). The initial rise was estimated by fitting the
model to the entire set of data; this estimate depends
critically on the number of stages assumed for the first
filter. The first filter has the shorter time constant and is
primarily responsible for the steep rise in the IRF and for
the sensitivity to high-frequency flicker. The number of
stages in the first filter can be estimated from the fall-off
in chromatic sensitivity at high flicker rates. Wisowaty
(1981) observed a high-frequency slope in log-log coor-
dinates of about —2 to —4. Stromeyer, Cole and
Kronauer (1987) found a slope of between —2 and —3
for their data and for replotted data of Varner, Jameson
and Hurvich (1984). The results likely underestimate the
asymptotic slope, so five stages were assumed for the first
filter.

The number of stages in the second filter is more
difficult to estimate. Assuming five stages would lead to
difficulty in fitting the data, given the rather steep
derivatives near the apparent zero-crossing (Fig. 8).
Based upon preliminary calculations, the second filter
was assumed to have two stages.

4

The detection process

The derivation of the IRF depends upon the detection
process (Watson, 1982). We consider both peak detec-
tion (Swanson et al., 1987) and probability summation
over time (Watson, 1979). Both models contain an early
filtering stage, followed by a later decision stage. A peak
detector responds when the internal signal reaches
threshold, whereas the probability summation model
assumes information is accumulated stochastically over
the stimulus interval.

The most informative data for choosing the decision
process are the thresholds for pulse pairs at long ISIs and
thresholds for flashes of long durations, since for these
data the choice of decision process has a much larger
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effect on the model fit than does reasonable variation in
the filter parameters. Unfortunately, different parts of
our data are consistent with each decision processes.
(1) Probability summation is suggested by the continuing
decline in threshold for flashes longer than Bloch’'s
critical time (Fig. 5), with a slope near — /8 (Watson.
1986). (2) Probability summation implies that the
threshold for pairs of pulses at large ISIs should be lower
than the threshold for a single pulse (given by the arrow
in Figs 6, 7 and 9), and this should be independent of the
polarities of the pair. Figure 9 shows this pattern. but
Figs 6 and 7 generally do not.

The data thus do not strongly support one decision
process over the other. We will assume a peak detector
owing to its simplicity; however, our major conclusions
would be similar had we chosen the probability sum-
mation model (see Appendix).

Fitted impulse—response functions

The
1986),

impulse-response is characterized (Watson,

h(t) = M{fi(1) — Tf(1)} &)

where each f represents an n-stage linear filter

f)y=[t(n— DY "[(t/ry " -exp(—t/t).  (6)

The two filters are normalized to have unit area. The
model was simultaneously fit to the data of Figs 6, 7, and
9 by minimizing the sum of

fmax{| ys(D|} — 17

with y,(7) defined by equations 4—6. The derived IRFs
are shown in Fig. 10, with parameters specified in
Table 2. The transience parameter, T [equation (5)],
determines the relative areas of the positive and negative
lobes of the IRF. The best value of T for both observers
was >1.0; however, T was set to 1.0 so that the IRF
would not integrate to a negative value at very long
times. Constraining 7 trivially increases the residual of
the fit, leaves the zero-crossing almost unchanged, but
does reduce the estimated time constant of the second
filter by 30-50 msec. (Most of the effect of allowing
T > 1.0 occurs at long ISIs where we have little data.)
The negative lobe is shallow, but the fits are substantially
worse when T is set to zero or if the second-lobe is made
positive.

The proportion of variance accounted for is specified
by r? (Table 2). The derived IRFs provide a good fit to
the two-pulse data of CFS and an adequate fit to the
data of RTE. The initial portions of the IRFs are similar
for the two observers; however, CFS has a slightly earlier
zero crossing. The IRFs tend to underestimate (~5%)
the extreme thresholds, as indicated by a plot (not
shown) of actual vs predicted &,.

Our IRFs, based upon 1deg test spots, are rather
different in shape from the 0.5 or 2 deg chromatic IRFs
of Swanson et al. (1987) obtained at 900 td, although
their IRFs did have a negative lobe. They used a model
with three filters rather than two, with pure delays
between the filters. These extra parameters might have
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FIGURE 10. Estimated impulse response functions A(¢) (in sec™') for
the two observers. Data from Figs 7 and 9 were weighted double
relative 1o Fig. 6. Parameters are specified in Table 2.

improved the fits of our IRFs but could reduce the
generality of the model.

The modulus of the Fourier transform of these IRFs
(not shown) has a small decline below 1 Hz, consistent
with the chromatic flicker data of Kelly and van Norren
(1977), Swanson et al. (1987) and Regan and Tyler
(1971b, Fig. 1b—no-surround condition).

The peak detector model provides a summary of the
two-pulse data. However, the probability summation
model may be more correct than the peak detector model
at threshold (Georgeson, 1987, Nachmias, 1981). For
instance, the peak detector predicts a threshold-vs-dur-
ation function with slope of —1 at short duration and
slope of zero at longer durations, which would provide
a very poor fit to our data (Fig. 5). The most realistic
model is likely to include probability summation over a
restricted, and perhaps variable, time period (Gorea &
Tyler, 1986). The current data put few constraints on this
time, so we adopted the peak detector for simplicity. The
limited integration time of the detection stage is the most

TABLE 2. Fitted IRF parameter values

RTE CFS

M 2.008 1.243
T 1.00 1.00
First filter

n 5 5

T (msec) 9.8 8.8
Second filter

n 2 2

T (msec) 176 158
r’ 0.71 0.91
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plausible explanation of the reduced crossover shown in
Fig. 9. In Fig. 9 the first pulse was of higher contrast
than in Figs 6 and 7; to the extent that the observer could
respond to the first pulse alone, the two pulses would not
interact and little crossover would be observed. This
reasoning suggests that two-pulse experiments that keep
lagl=lqa,], such as those of Uchikawa and Yoshizawa
(1993) and Burr and Morrone (1993), may underesti-
mate the duration of the IRF, and perhaps miss a second
lobe.

The negative lobe in the estimated chromatic IRF is
quite shallow, compared to estimates of the negative lobe
of the luminance IRF (Watson, 1986). However, the
negative lobe is deep enough to produce such effects as
a decline in sensitivity during a chromatic flash (Eskew
et al., 1994) and the chromatic offset rebound, since these
effects depend upon integrating the IRF.
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APPENDIX

This Appendix compares the peak detector model with the probability
summation model (Watson, 1979). The latter is typically applied in
situations in which the contrast of the test can be factored out of the
response expression, such as when the stimulus consists of two
equal-amplitude pulses and y(1) =ah(f) +ah(t — ) =afh(t) +
h(1 — &)}, equation (4). Here we discuss some limitations of two-pulse
experiments in general, and derive a method for applying the prob-
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ability summation model when one pulse has a fixed amplitude and the
other varies, as in the first two of our two-pulse cxperiments.
The peak detector respends whenever

max{| y;(r}{} > 1.0, (Al

where 0 is the 1S1.
For the probability summation model, the probability P of detection
is

P(als)=1— exp[ - f Clrnitdi J (A2)

Inferences from two-pulse data

We denote the measured two-pulse threshold as a-function of ISI by
a = F[8] + F[o0); & is chosen to give 82% correct detection, and F[oc]
is the threshold when the two pulses are separated by an ISI greater
than the duration of the IRF. In Figs 8 and 9, we plot the heterochro-
matic-homochromatic difference, as a way of averaging the thresholds
and eliminating polarity-independent trends (see discussion of Fig. 7).
Denote the heterochromatic and homochromatic data by
F_[6]+ Fl[eo] and F,[6]+ F[oc], respectively (by hypothesis,
F_[oo] = F [oo] = F[oo]). Since the decision in both models is based
upon the absolute value of the chromatic response - y(7),
F_[6]= — F [0}, and the heterochromatic-homochromatic difference
F_[8]+ Flw] — F [0] —Floo] = 2F[6].

When |ay] « |a,|, F[8] approximates the shape of #(r) if peak
detection occurs (Roufs & Blommaert, 1981). Thus if the peak
detection model is correct, Fig. 8 may provide a good approximation
to the actual impulse response. This is not true for probability
summation, however (Watson, 1982), nor is it true for Fig. 9 even if
peak detection is correct since la)| = |a,}.

When the two pulses are identical (g, = a,), then y,(1) = y_{#); and
it does pot matter which pulse is first. When. g,= —g),
yit) = —y_«1), since there is linearity up to the decision stage and
we assume that detection is independent of polarity. Thus, when
layl = |ay|, the threshold vs ISI function F[§] must be even-symmetric
about zero ISI, for both detection models. The interaction between the
two pulses will be maximal at § =0. Therefore when the pulse
amplitudes are equal, the two-pulse method cannot reveal the presence
of an absolute delay, or the rising portion of the IRF.

When the two pulse magnitudes are not equal, the largest interaction
is still at zero ISI, but an asymmetry in F[§] could in principle provide
information about the rising portion of the IRF. Such as-asymmetry
could arise under either model, but any deviation from symmetry is
likely to be small. In the present experiments, we only measured the
right-hand side of F[8] (the larger pulse came later), and therefore we
could not expect to see any effect of the rising portion of the IRF in
our data: the rising portion must be inferred from the model.

Peak detector and probability summation model fits

The peak detector model parameters were estimated by minimizing
the sum, over 8, of [max{| y(")I} — IF, using Powell’s méthod (Press,
Flannery, Teukolsky & Vetterling, 1986). The experiments in which the
total observation interval was kept constant (Figs 7 and 9) were
weighted double in the fit, but all data were weighted equally in
calculating the residual mean. square error (this is a conservative
calculation of error).

In addition to fitting the peak detector model, some trial calculations
were made with the probability summation model. This model can be
applied in a straightforward way when the two pulses are varied
together (Fig. 9). The following approach was used when the first pulse
was fixed (Figs 6 and 7).

For measured detection rates we assume a 50% guess probability.
For a single pulse,

Pla)=1 —%exp[ —fJ ta- k(" dz}
o

Similarly, for a presentation of two pulses,

(A3)

Pyala) =1 — [1 - —é]exp[ - J‘ﬁlao-h(r)—k ag h(t— 6)["2dt:‘. (A4)
0
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Equations (A3) and (A4) are theoretical assertions based upon
Watson’s (1979) model of probability summation. We next set
equation (A4) equal to equation (3) and find

1 — (1 — P(ay))-expl — (a,/a;)"}

P2

1 :
=1- 1—5 expl — | lagh(t)+a;-h(t —o)2de |

0
Substituting equation (A3) for P(a,) on the left side and performing
simple algebra yields

Jl lagh(0) di + [ay/a; =f"|ao-h(r) +ah(t — ) di. (AS)
0 0

Equation (A5) is exact; however, in the fits we assumed that
¥, =y, = B; = p—the average of the measured psychometric slopes,
making the analysis approximate. At threshold, a, = a; by definition.
Impulse-response functions A(t) were fit to the data in Figs 6 and 7
by minimizing the squared-deviation between the two sides of the
following equation:

Jxlaﬁ‘h(t)\/'dt +1 =J1|a0<h(1)+ab-h(1 —o)|*dr.  (A6)
0 0

The error surface defined by the square of equation (A6) had many
more local minima and higher residuals than the corresponding surface
defined by the peak detector. The best-fitting IRFs were similar to
those in Fig. 10 but had later zero crossings and deeper negative lobes,
especially for observer CFS.





