
Ecology, 89(2), 2008, pp. 428–438
� 2008 by the Ecological Society of America

SIMULATED PREDATOR EXTINCTIONS: PREDATOR IDENTITY AFFECTS
SURVIVAL AND RECRUITMENT OF OYSTERS

NESSA E. O’CONNOR,1,4 JONATHAN H. GRABOWSKI,2 LAURA M. LADWIG,1 AND JOHN F. BRUNO
3

1Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street,
Morehead City, North Carolina 28557 USA

2Gulf of Maine Research Institute, 350 Commercial Street, Portland, Maine 04101 USA
3Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3300 USA

Abstract. The rate of species loss is increasing at a global scale, and human-induced
extinctions are biased toward predator species. We examined the effects of predator extinctions
on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial
experiment manipulating the presence and abundance of three of the most common predatory
crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab
(Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species
richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic
matter content of sediment. We also manipulated the density of each of the predators and
controlled for the loss of biomass of species by maintaining a constant mass of predators in one
set of treatments and simultaneously using an additive design. This design allowed us to test the
density dependence of our results and test for functional compensation by other species.

The identity of predator species, but not richness, affected oyster populations. The loss of
blue crabs, alone or in combination with either of the other species, affected the survival rate of
juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment
organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill
some of the functions of blue and stone crabs, suggesting a level of ecological redundancy.
Importantly, the strong effects of blue crabs in all processes measured no longer occurred when
individuals were present at higher-than-ambient densities. Their role as dominant predator is,
therefore, dependent on their density within the system and the density of other species within
their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss
at higher trophic levels are determined by predator identity and are subject to complex
intraguild interactions that are largely density dependent. Understanding the role of
biodiversity in ecosystem functioning or addressing practical concerns, such as loss of
predators owing to overharvesting, remains complicated because accurate predictions require
detailed knowledge of the system and should be drawn from sound experimental evidence, not
based on observations or generalized models.
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INTRODUCTION

As the global rate of extinction continues to climb

upward (Regan et al. 2001), human-induced extinctions

have been disproportionately concentrated toward

higher trophic levels (Pimm et al. 1988, Lawton and

May 1995, Petchey et al. 2004, Byrnes et al. 2007).

Activities that remove predator species, such as fishing,

can lead to ecological extinctions that can have dramatic

cascading effects within a system (Pauly et al. 1998,

Jackson et al. 2001, Bruno and O’Connor 2005).

Virtually all communities contain several species of

predator. To understand the effects of the continued loss

of predator species we must, therefore, also understand

the ‘‘emergent effects’’ of multiple predators (Polis and

Strong 1996, Sih et al. 1998). There are various

mechanisms by which predators interact with each

other. Decreased predator diversity may reduce the

magnitude of their consumptive (Cardinale et al. 2003,

Duffy et al. 2003, Gamfeldt et al. 2005) or noncon-

sumptive (i.e., trait-related) (Sih et al. 1998, Schmitz et

al. 2004, Wojdak and Luttbeg 2005, Byrnes et al. 2006)

effects. Conversely, increased predator diversity could

result in intraguild predation and nonconsumptive

effects that dampen cascading effects on lower trophic

levels (Strong 1992, Siddon and Witman 2004, Finke

and Denno 2005).

Many processes depend on the influence of a

particular taxon rather than species richness per se
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(Grime 1998, Downing and Leibold 2002, O’Connor

and Crowe 2005). The question of whether one (or a

few) ‘‘key’’ species is driving an observed effect of

biodiversity loss is fundamental for the accurate

interpretation of results (Wardle and Grime 2003, Worm

and Duffy 2003). It is, therefore, essential to design

experiments that separate species richness from identity

effects and avoid confounding them, as has been done in

previous studies (Huston 1997, Wardle and Grime 2003,

O’Connor and Crowe 2005).

Removal experiments explore the direct effects on

ecosystem properties when a species is no longer present.

These experiments have the potential to address effects

of realistic extinctions on ecosystem functioning

(Schläpfer and Schmid 1999, Wardle et al. 1999, Diaz

et al. 2003, Hooper et al. 2005). When a species is

removed from a system, the overall biomass of predators

is also reduced. Any effect of the loss of species is,

therefore, confounded by the loss of biomass (Likens

1985, Lawton and Brown 1994, Ruesink and Srivastava

2001). The only way to test conclusively for the loss of

species is to include controls for this loss of biomass. A

combination of ‘‘additive’’ and ‘‘replacement’’ type

designs test for effects of species richness, identity, and

mass (Connolly 1988, Sih et al. 1998, Benedetti-Cecchi

2004, Ives et al. 2005). Simultaneously removing certain

species and increasing the mass (density) of remaining

species also allows us to examine further the potential

for apparent ecological ‘‘redundancy’’ or in-built ‘‘bio-

logical insurance’’ within the system and to test the

density dependence of results.

The southeastern coast of the United States is

characterized by soft-sediment dominated estuaries

inhabited by several species of predatory crabs such as

the blue crab (Callinectes sapidus), stone crab (Menippe

mercenaria), and mud crab (Panopeus herbstii). These

crabs are widely harvested commercially (Kennedy and

Cronin 2006). The blue crab is considered a key species

in this system (Hines et al. 1990, Eggleston et al. 1992,

Ebersole and Kennedy 1995, Micheli 1997, Seitz et al.

2001). During the 1990s, their populations declined by

40–80% (Lipcius and Stockhausen 2002). It is, therefore,

increasingly relevant and interesting to examine the

potential role of other predatory crab species in the

absence of blue crabs (e.g., Silliman and Bertness 2002).

If blue crabs were to become ecologically extinct, it is

unclear whether other species such as stone and mud

crabs would assume their functional roles in the system.

Some predator species that do not appear to have strong

effects when predator diversity is high may become

important when a key species, such as blue crab, is

removed. In systems such as oyster reefs, remaining crab

species could compensate for the loss of blue crab either

by increasing their consumption rates of prey or by

increasing in mass or density; however, this has yet to be

tested.

Oysters, such as the eastern oyster (Crassostrea

virginica), have been commercially exploited such that

native beds are being depleted both regionally and

globally (Rothschild et al. 1994, Kennedy et al. 1996,
Peterson et al. 2003). Degradation of oyster reef habitat

has resulted in the loss of not only commercial oyster
harvests but also the many ecosystem services they

provide, such as increasing water quality by filter
feeding, decreasing erosion by stabilizing sediments,
and providing hard substrate and structured habitat for

benthic organisms (Bahr and Lanier 1981, Dame et al.
1984, Newell 1988, Luckenbach et al. 1997, Eggleston et

al. 1998, Peterson et al. 2003). The dramatic decline of
such foundation species threatens the diverse communi-

ties they facilitate (Bruno and Bertness 2001, Lenihan et
al. 2001, Bruno et al. 2003, Grabowski et al. 2005).

Understanding the interactions among predators (crabs)
and prey (oysters) is necessary to understand the

dynamic processes that regulate this vulnerable system
(Fig. 1).

We conducted a field experiment to test for the effects
of loss of predator species on a shared prey species.

Using native oyster reefs as a model system, we tested
the effects of predators on an important foundation

species and its associated habitat. We manipulated the
number and identity of three predator species (blue crab,

stone crab, and mud crab) using cage enclosures and
measured their independent and interactive effects on
three processes: (1) juvenile oyster survival, (2) oyster

recruitment, and (3) percentage of organic matter of
sediment. This design permitted us to test the following

four models: (1) predator identity, but not species
richness, affects oyster survival, oyster recruitment,

and sediment organic matter; (2) the blue crab is a key
predator in this system; (3) increased densities of other

predators cannot compensate for the loss of a key
predator; and (4) the effects of predator identity are

density dependent in this system.

MATERIALS AND METHODS

Study system

The experiment was conducted at Hoop Pole Creek,
Bogue Sound, North Carolina, USA. Hoop Pole Creek

is a wildlife refuge in a sheltered estuarine area between
the mainland and barrier islands. The area includes salt

marshes, seagrass beds, native and restored bivalve beds
including clams (Mercanaria mercanaria) and oysters

(Crassostrea virginica), and extensive mudflats. Our
experiment was conducted on intertidal mudflats adja-

cent to native oyster beds. Blue crabs, mud crabs, and
stone crabs are among the most abundant benthic

predators in this system and are easily manipulated at an
appropriate scale (Grabowski 2004, Hughes and Gra-

bowski 2006).

Experimental design

The experiment ran from May to October 2005,
incorporating the expected peak oyster spawning and

recruitment periods (Southworth and Mann 2004). In
total, 15 treatments (including a procedural control),
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each replicated in five experimental plots, were estab-

lished, and subsets of these treatments were used to test

specific hypotheses (Table 1). The first set of treatments

included the simulated removal of 0, 1, 2, or 3 species in

a fully factorial design. The factorial design facilitates

examination of all independent and possible interactive

effects of the loss of each species. To test if the number

of species or the identity of species present affected the

processes under examination, a nested design parti-

tioned the variance of identity nested in richness

(Schmid et al. 2002, Giller et al. 2004). A two-factor

nested analysis was performed on all treatments where

one or two species had been removed. The first factor,

‘‘number of species lost,’’ is fixed, and the second, factor

‘‘identity of the species,’’ is nested in the first. Planned

comparisons tested directly if the blue crab is a key

predator species by analyzing all treatments with and

without blue crab and comparing them to the other

treatments that had different numbers of species present.

The ‘‘presence of blue crabs’’ is a fixed factor, and the

second factor, ‘‘other treatments,’’ is nested in the first.

To simulate realistic extinction scenarios, species were

present in experimental plots at densities based on

natural abundance patterns. Predator densities within

our plots were based on previously collected data and

estimated to be within the range of densities typical in

nature (e.g., Zimmerman et al. 1989, Lenihan et al. 2001,

Grabowski et al. 2005; J. H. Grabowski, unpublished

data). All three species have commonly been observed

together in areas of similar size to our experimental

cages (J. H. Grabowski, personal observation). Cages

(described in Materials and methods: Field and labora-

tory methods) were necessary to maintain the treatments

in each experimental plot. The treatment containing all

crabs contained one blue crab, one stone crab, and four

mud crabs. The average individual mass of each species

was 12 (63.4) g for blue crabs (30–70 mm carapace

width, CW), 28 (62.4) g for stone crabs (30–60 mm

CW), and 1.5 (60.3) g for mud crabs (10–20 mm CW);

values are means 6 SE . Individual crabs used in the

experiment were deliberately not all the same size, but

were all within the specified size range that is represen-

tative of native crab assemblages at this location.

In a second set of treatments, the overall mass of

predators present was constant, and the number and

identity of species of predator was manipulated as

before. Specifically, each treatment that had one or two

FIG. 1. Interaction web of the model system,
illustrating the positive and negative direct (solid
lines) and indirect (dashed lines) effects among
species and functional groups. The figure includes
potential intraguild effects among predators (blue
crab Callinectes sapidus, stone crab Menippe
mercenaria, and mud crab Panopeus herbstii)
and the role of reefs of the eastern oyster
Crassostrea virginica in facilitating a diverse
assemblage of species, including the predatory
crabs, thus forming a negative feedback loop.

TABLE 1. Experimental treatments simulating extinction of 0,
1, 2, and 3 species of predatory crabs.

Treatment code
No. species
excluded

Identity of
species excluded

a) Species number vs. identity

A 0 0
B 1 blue crab
C 1 stone crab
D 1 mud crab
E 2 blue and stone crab
F 2 blue and mud crab
G 2 stone and mud crab
H 3 blue, stone, and mud crab

b) Compensation for mass

I 1 blue crab�
J 1 stone crab�
K 1 mud crab�
L 2 blue and stone crab�
M 2 blue and mud crab�
N 2 stone and mud crab�

c) Cage effect

O 0 0 (no cage/manipulation)

Notes: Subsets were compared to test specific hypotheses. (a)
Treatments used to assess if the number or identity of species
affected oyster survival and recruitment and organic matter
content. A subset of these treatments (B, C, D, E, F, G) was
analyzed in a nested ANOVA to differentiate between the
effects of species number and identity. A separate analysis
compared treatments with (A, C, D, G) and without blue crabs
(B, E, F, H). (b) Comparison of treatments with compensation
for loss of mass (I, J, K, L, M, N) to treatments without (B, C,
D, E, F, G) tested the effects of loss of mass of predators
resulting from their exclusion. (c) Comparison of the treatment
with all crabs present and a cage (A) with the treatment that has
no cage or experimental manipulation (O) tested for cage
effects.

� Includes increased mass of other crabs.
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species removed also had an analogous treatment in

which the mass of the remaining predators was increased

to an equivalent mass to compensate for this loss. This

design determined whether other species at unchanged

or increased densities were able to fill a functional role of

a removed species and also illustrated whether any

effects of the loss of predators are density dependent. In

essence, replacement and additive designs were used

concurrently (Connolly 1988, Sih et al. 1998, Benedetti-

Cecchi 2004). To control for caging artifacts (Under-

wood and Denley 1984), we included experimental plots

without cages, and the data from these plots were

compared with the treatments that simulated the

presence of all three predators at natural abundances.

Field and laboratory methods

Experimental plots were established in an area of

;750 m2 and were assigned to treatments randomly.

Cages were square, 503 503 50 cm, and made of plastic

mesh (5 mm aperture) attached to a frame of polyvinyl

chloride (PVC) 20 mm diameter pipes. A hydraulic

pump was used to dig trenches in the mud so that cages

could be fixed into the sediment to prevent the

emigration of the experimental predators. The cages

were buried at least 10 cm into the sediment, and

reinforcing steel rods (rebar) were placed through the

PVC pipes at two opposite corners of each frame. Plots

that controlled for cage effects were marked with rebar

and PVC but did not have a cage. To create suitable

habitat for the predators and substrate for juvenile

oyster recruitment, ;20 L of oyster shells were added to

each plot. The oyster shells were collected previously

from sites close to the study site and contained no living

benthic fauna. All predators were collected with crab

traps at the experimental site and surrounding area.

After a week, predators were added to the cages as

required for each treatment, and lids were fastened with

cable ties. The cages were inspected regularly during the

experiment, and treatments were maintained.

Juvenile oyster survival rates.—Juvenile oysters (,20

mm wide) were bought from a local oyster hatchery.

Individual oysters were tethered to small marking flags

with nylon thread and glue and kept alive in through-

flow water tables. Ten individuals were added to each

experimental plot (n ¼ 5 plots). The number of juvenile

oysters surviving in each plot was recorded after 24

hours and analyzed as percentage survival.

Oyster recruitment and organic matter content of

sediment.—After five months, we collected some of the

original dead oyster shells from each experimental plot.

Twenty shells were sampled randomly from each

treatment. The number of oysters on each shell was

counted, and an average was calculated for each plot (n

¼ 5). To standardize comparisons of recruitment among

treatments, horizontally positioned shells of approxi-

mately the same size class (average width 94 6 2.9 mm)

were selected, and all oysters that recruited onto these

shells were counted. Sediment samples were also

collected, one from each plot (n¼ 5). A 75 mm diameter

core was used to sample the top 10 cm of sediment.
Sediment samples were frozen and at a later date were

oven-dried, weighed, placed in a furnace at 5008C for 4
h, and reweighed. We estimated the percentage of

organic matter of sediment based on loss of ignition,
following Dean (1974).

Statistical analyses

Analysis of variance (ANOVA) was used to test all

hypotheses. WinGMAV5 was used for computations
(Underwood and Chapman 1998). Prior to performing

ANOVAs, we conducted Cochran’s test for homogene-
ity of variance and transformed heterogeneous data

(Underwood 1997). Oyster percentage survival rate data
were arcsine transformed, and oyster recruitment and

organic matter data were square-root transformed. A
Student-Newman-Keuls procedure was used to make

post hoc comparisons among levels of significant terms
(Day and Quinn 1989). An alpha significance level of

0.05 was used on all analyses.

RESULTS

Distinguishing the influence of identity vs. species richness

The identity of the predator (or particular combina-
tion of predators), and not the number of predators

present, affected juvenile oyster survival (F1,4 ¼ 5.39, P
, 0.003; Appendix A, Fig. 2A), the number of oysters

recruited (F1,4¼14.86, P , 0.000; Appendix A, Fig. 2B),
and the percentage of organic matter in sediment (F1,4¼
6.57, P , 0.001; Appendix A, Fig. 2C). None of the
measured processes responded in a predictable manner

in relation to the number of species of predators present.
Thus the responses were idiosyncratic and were related

clearly to the identity of the species of predator present.

Testing the importance of blue crabs

Planned comparisons of treatments with and without

blue crabs showed that the presence of blue crabs
reduced juvenile oyster survival significantly (F1,6 ¼
42.53, P , 0.001; Appendix B, Fig. 2A). The presence of
blue crabs alone or with the other predators had a
negative effect on oyster survival rates. In the longer

experiments, however, a different pattern emerged.
Oyster recruitment was not affected by the presence or

absence of blue crabs but by the particular treatment
(combination of predators removed) (F1,6 ¼ 11.45, P ,

0.000; Appendix B). Post hoc tests show that oyster
recruitment was much lower in treatments with no

predators removed and in treatments that removed
stone crabs and mud crabs together, compared to all

other treatments (Fig. 2B). The presence of blue crabs
alone was similar to when all three predators were

present, and all other experimental removals had a
similar effect as when no predators were present. The

simulated removal of either just stone crabs or just mud
crabs led to an increase in the number of oysters

recruiting, suggesting initially that they are both
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important predators for this prey in this system. When

both these species were removed together, however, the

remaining blue crabs had a similar effect on oyster

recruitment as when all three species are present.

The presence of blue crabs and the combination of

predators removed both affected organic matter in

sediment (blue crabs F1,6¼ 6.9, P , 0.039; combination

of predators F1,6 ¼ 3.07, P , 0.017; Appendix B, Fig.

2C). Although the causative treatments could not be

identified with post hoc tests, these results show a similar

trend to oyster recruitment patterns and suggest that

there is a possible positive correlation between oyster

recruitment and sediment organic matter.

Compensation by other species for the loss of mass

and testing for density dependence

Other predators at increased densities could not

compensate for the loss of blue crabs on juvenile oyster

survival; none of the pairs of treatments with and

without compensation differed from each other (Ap-

pendix C, Fig. 3A). We no longer detected an identity

effect on oyster survival when comparing the data at

FIG. 2. Effect of loss of species richness and identity of oyster predator on (A) proportion of juvenile oysters surviving over 24
hours, (B) oyster recruitment rate over five months, and (C) percentage of sediment organic matter after five months; n ¼ 5
replicates of each treatment. In the case of recruitment, an average measurement was recorded for each plot. For the sediment
samples, one core was taken from each of five replicate plots. Cores were 75 mm diameter and 100 mm deep (;442 cm3 sediment
sampled from each plot). Values are untransformed means (6SE). Letters (a, b) indicate groups of means that are statistically
indistinguishable from each other (where letters differ, P � 0.05). In the x-axis label, predatory crab species that have been removed
have a line through the name.
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lower and increased densities because these results were
more variable than those without replacement (the

additive design).

There was an interactive effect of compensation for
loss of biomass on oyster recruitment (F1,4¼ 17.51, P ,

0.000; Appendix C). Two pairs of treatments (with and

without compensation for mass) differed from each
other: experimental removal of blue and stone crabs

together and removal of stone and mud crabs together
(Student-Newman-Keuls tests, P , 0.05; Fig. 3B, see

also Fig. 2B). Having identified in the previous set of
analyses that simultaneous removal of blue and stone

crabs increased oyster recruitment significantly (Fig.

2B), removing these same crab species while also

compensating for their removal by elevating mud crab
densities reduced oyster recruitment (i.e., this effect was

attenuated).

The previous set of analyses also showed that the
experimental removal of stone and mud crabs together

had no effect on oyster recruitment (similar to when all

three predators were present) (Fig. 2B). There was a
significant difference in oyster recruitment, however,

when stone and mud crabs were removed and blue crabs
were at lower densities compared to when stone and

mud crabs were removed and blue crabs were at
increased densities. In fact, the highest oyster recruit-

ment observed in the whole experiment was in this

treatment. This difference demonstrated that although

FIG. 3. Effect of loss of species richness and identity of oyster predator species with and without compensation for loss of mass
of species on (A) proportion of juvenile oysters surviving over 24 hours, (B) oyster recruitment rate over five months, and (C)
percentage of sediment organic matter after five months; n¼ 5 replicates of each treatment. In the case of recruitment, an average
measurement was recorded for each plot. For the sediment samples, one core was taken from each of five replicate plots. Cores were
75 mm diameter and 100 mm deep (;442 cm3 sediment sampled from each plot). Values are untransformed means (6SE). Open
bars represent treatments that do not include compensation for loss for biomass. Gray bars represent treatments that include
compensation of biomass for the removed predators. Letters (a, b, c) indicate groups of means that are statistically
indistinguishable from each other (where letters differ, P � 0.05). In the x-axis label, predatory crab species that have been removed
have a line through the name.
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blue crabs are important predators, at higher-than-

estimated ambient densities their effect on the prey was

completely mitigated, most likely due to negative

intraspecific interactions. Collectively, these results

suggest that the effects of predator identity on oyster

recruitment are highly density dependent.

There was also an interactive effect of compensation

for mass on sediment organic matter (F1,4 ¼ 6.42, P ,

0.000; Appendix C, Fig. 3C). In general, there was a

similar trend to that seen in the oyster recruitment data,

but the post hoc tests were not decisive. Comparisons

between pairs of treatments also showed that there was a

significant effect of compensation for mass in the

treatments that involved the removal of blue and stone

crabs as well as stone and mud crabs. This suggests that

the effect of predator identity on sediment organic

matter is also likely density dependent.

Cage effects

There was no significant difference in juvenile oyster

survival rates (F1,8 ¼ 1.26, P . 0.29; Fig. 4A), the

number of oysters recruiting (F1,8¼ 3.06, P . 0.12; Fig.

4B), or sediment organic matter (F1,8 ¼ 1.49, P . 0.26;

Fig. 4C) in control plots (no cage, no predator

manipulation) and treatments with cages and all three

predators present at ambient densities.

DISCUSSION

We simulated the effect of extinction of three

predators and found that the identity and not the

richness of predator species affected the oyster prey

populations and ecosystem properties (e.g., sediment

organic matter). The effects of different species of

predator on prey (and related processes) were both

idiosyncratic and density dependent, and multiple-

predator emergent effects were identified. This idiosyn-

cratic effect of species loss is consistent with others

studies in marine systems modeled in mesocosms

(Emmerson and Raffaelli 2000, Bruno and O’Connor

2005) and in field experiments based on removal of

primary producers (Allison 2004) and herbivores

(O’Connor and Crowe 2005). This study presents one

of the first field-based simulated multiple-predator

removal experiments and strengthens the argument for

idiosyncratic effects of species loss, that is emerging as a

prevalent theme, in marine systems.

In our short-term experiment testing the effect of loss

of predators on juvenile oyster survival, blue crabs

appeared to be a key predator. Only the experimental

removal of blue crabs (in any combination) affected

juvenile oyster survival rates. Oyster recruitment and

sediment organic matter accumulation (processes that

occurred over five months), however, showed that all

combinations of removals (single-species removal or

more than one) had a positive effect except when stone

and mud crabs were removed together (Fig. 2B). In

other words, when the blue crab was the only predator

present, it had the same effect as when all three

predators were present. All predators affected oyster

recruitment, and blue crabs again emerged as the

dominant predator. The results also suggest that stone

and mud crabs are at least partially redundant in this

context. Clearly the number of oysters recruited was

determined by the particular combination of predators

present, and this could not be predicted based on species

richness of predators. The singular effect of the removal

of each predator on prey differed from the overall effect

of a group of predators, depending of the identity of the

predator. This has important implications for future

models of food web dynamics where different predator

species are often grouped as one functional unit.

Our findings are contrary to some other studies

examining the effects of predators on shared prey.

FIG. 4. Effect of cage on (A) proportion of juvenile oysters
surviving over 24 hours, (B) oyster recruitment rate over five
months, and (C) percentage of sediment organic matter after
five months; n ¼ 5 replicates of each treatment. In the case of
recruitment, an average measurement was recorded for each
plot. For the sediment samples, one core was taken from each
of five replicate plots. Cores were 75 mm diameter and 100 mm
deep (;442 cm3 sediment sampled from each plot). Values are
untransformed means (6SE). White bars represent the treat-
ments with all three crab species present enclosed with a cage,
and gray bars represent experimental plots with no cage
(control).
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Sokol-Hessner and Schmitz (2002) used a terrestrial

system and examined all combinations of zero to three

species of predator. The authors concluded that

multiple-predator effects on prey mortality were gener-

ally the average of the corresponding single-species

effects and suggested that predator species could be

aggregated into a single functional unit. The emergent

effects of species losses arising from complex trophic

interactions, often through indirect effects, cannot,

however, always be predicted by adding their individual

impacts (Sih et al. 1998, Downing and Leibold 2002,

Duffy et al. 2003, Worm and Duffy 2003).

Perhaps even more important, the density of each

species of predator also emerged as a critical factor

determining the outcome. Our findings show that in the

absence of stone and mud crabs, blue crabs present at

estimated ambient density affected oyster recruitment.

This effect was no longer present when the density of

blue crabs was increased to compensate for the loss of

mass of the other two species. Mitigation of the strong

effect of this dominant predator was most likely due to

negative intraspecific interactions among blue crabs

when densities are high. The exact mechanism respon-

sible requires further study and should include tests for

consumptive and nonconsumptive interactions between

crabs (Werner and Peacor 2003). Increasing predator

density is usually assumed to increase the suppression of

prey populations; however, our results suggest that

restoring the density of overharvested consumers, such

as blue crabs, may potentially reduce their ecosystem

impacts.

Further, when blue and stone crabs were removed and

mud crabs were present at estimated ambient density,

oyster recruitment increased, suggesting that mud crabs

were weak predators. When the density of mud crabs

was increased to compensate for the loss of mass of blue

and stone crabs, however, the number of oysters

recruiting was significantly less. This indicates that at

increased densities mud crabs fulfilled at least some of

the role of the more dominant predators (blue and stone

crabs), suggesting another potential level of redundancy

in the system. Whether mud crabs would indeed increase

in densities in the absence of blue and stone crabs

remains to be tested. Our results are the first step in

examination of such a scenario and show clearly that it

warrants exploration, possibly by a large-scale, field-

based removal of blue crabs. The species we investigated

display territorial, antagonistic behavior (Beck 1997,

Clark et al. 1999, Grabowski and Powers 2004), so that

removal of one species could result in compensation by

another. This may already be occurring given that both

stone crabs and blue crabs have been fished heavily over

the past several decades. However, long-term data sets

recording mud crab densities throughout these periods

do not exist to the best of our knowledge.

Most previous theoretical and empirical studies

examining the effects of predators have concluded that

knowledge of the identity of a particular species is

crucial to predict the impact of predators on prey

populations (Paine 1992, Chalcraft and Resetarits 2003,

Thébault and Loreau 2003, Petchey et al. 2004). Our

study strengthens this conclusion and also shows that

the density of predators and their intraguild and

intraspecies interactions must also be considered,

especially since density and identity effects can be

coupled. Knowledge of the identity of species within

each trophic level and the number of individuals of each

species is, therefore, necessary to predict the emergent

effects of multiple predators on their shared prey.

Properties such as organic matter transformation are

not often considered in the context of species loss and

ecosystem functioning (Giller et al. 2004). Incorporation

of such processes will help merge the traditional fields of

ecosystem ecologists and food web ecologists and bring

further understanding to community ecology and the

effects of species loss in general. A change in organic

matter is indicative of a shift in organic carbon within

the system and can have consequences for the nutrient

dynamics of a whole system. The similar trend in

response to treatments of oyster recruitment and organic

matter suggests that there is a positive, albeit correlative,

relationship between oyster recruitment and organic

matter in the associated sediment. This demonstration of

an indirect effect of loss of predators on a basal resource

may be a consequence of changes in the abundance of

oysters, possibly linked to their production of bio-

deposits. In particular, these oysters produce pseudo-

feces (material filtered out of the water column and

rejected before ingestion), thus facilitating the transfer of

organic matter such as algal cells into the sediment

(Newell and Langdon 1996). This indirect effect suggests

that predator effects result in trophic cascades in this

system because the loss of predators (determined by

identity and density) affects oyster recruitment, which

appears linked to the amount of organic matter in

sediment.

Nontrophic interactions are important factors deter-

mining the structure and dynamics of systems based on

habitat-modifying species (Jones et al. 1994, Bruno and

Bertness 2001, Grabowski 2004). Oyster reefs are

important recruitment and refuge sites for many species,

including juvenile predators such as blue crabs (Eggle-

ston et al. 1998, Posey et al. 1999). These predators

could, therefore, affect indirectly the persistence of their

own habitat. The positive link between oysters, the

foundation species, and their associated assemblages are

counteracted by the negative effects of predatory species

preying on juvenile oysters. The strength of these

opposing effects must be included in any predictive

model.

As with all removal experiments, we must be careful in

drawing conclusions regarding the application of the

results to larger spatial and temporal scales (Bengtsson

et al. 2002, Hooper et al. 2005). This study provides a

significant contribution toward understanding the role

of predators and predator diversity in realistic food
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webs; however, future research is required to test

explicitly the context dependency of our results (Hooper

et al. 2005, O’Connor and Crowe 2005). Although

removal experiments have limitations, they are the most

appropriate method of simulating species loss (Symstad

et al. 1998, Diaz et al. 2003, Petchey et al. 2004).

Human-driven species loss tends not to be random;

therefore, research yields more useful results when

targeted species are included in extinction simulations

(Grime 1998, Wardle 1999, Diaz et al. 2003, Srivastava

and Vellend 2005), such as those used in our experiment.

Our findings have practical implications regarding the

conservation and management of marine reserves (Fair-

weather 1991, Kennedy et al. 1996, Kennedy and Cronin

2006). Our study provides insight into the role of

predators that are normally heavily fished, except in

reserves where they often occur in higher abundances,

and examines their impact through trophic processes on

a foundation species. This kind of basic research, aimed

at examining the effects of loss of heavily harvested

species, provides information necessary for reserve

managers to make better-informed decisions and im-

proves the effectiveness of environmental restoration

(Peterson and Lipcius 2003).

A recent synthesis of both biodiversity–ecosystem

functioning and predator–prey interactions research

(Ives et al. 2005) has paved the way for greater

communication between these subdisciplines. Examining

the effect of predators on multiple trophic levels and

multiple processes is, therefore, imperative to under-

stand the relationship between biodiversity and ecosys-

tem functioning in order to construct a more predictive

framework.
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APPENDIX A

Results from ANOVA testing effects of the predator richness and identity treatments on juvenile oyster survival, oyster
recruitment, and percentage organic matter (Ecological Archives E089-024-A1).

APPENDIX B

Results from ANOVA testing planned comparisons of different combinations of predators with and without blue crabs on
juvenile oyster survival, oyster recruitment, and organic matter (Ecological Archives E089-024-A2).

APPENDIX C

Results from ANOVA testing effects of removing different combinations of species of predator with and without compensation
for the loss of biomass on juvenile oyster survival, oyster recruitment, and organic matter (Ecological Archives E089-024-A3).
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