
Neuroscience and Biobehavioral Reviews 131 (2021) 211–228

Available online 10 September 2021
0149-7634/© 2021 Elsevier Ltd. All rights reserved.

Predictive processing models and affective neuroscience 

Kent M. Lee a,*, Fernando Ferreira-Santos b, Ajay B. Satpute a 

a Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02118, USA 
b Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal   

A R T I C L E  I N F O   

Keywords: 
Predictive processing 
Predictive coding 
Subjective experience 
Ecological validity 
External validity 
Valence 
Degeneracy 
Reverse inference 
Experimental design 
fMR 
Arousal 
Emotion 
MVPA 

A B S T R A C T   

The neural bases of affective experience remain elusive. Early neuroscience models of affect searched for specific 
brain regions that uniquely carried out the computations that underlie dimensions of valence and arousal. 
However, a growing body of work has failed to identify these circuits. Research turned to multivariate analyses, 
but these strategies, too, have made limited progress. Predictive processing models offer exciting new directions 
to address this problem. Here, we use predictive processing models as a lens to critique prevailing functional 
neuroimaging research practices in affective neuroscience. Our review highlights how much work relies on rigid 
assumptions that are inconsistent with a predictive processing approach. We outline the central aspects of a 
predictive processing model and draw out their implications for research in affective and cognitive neuroscience. 
Predictive models motivate a reformulation of “reverse inference” in cognitive neuroscience, and placing a 
greater emphasis on external validity in experimental design.   

1. Introduction 

Research in affective neuroscience has spent considerable effort 
searching for the brain bases of affective dimensions such as valence and 
arousal (Barrett and Bliss-Moreau, 2009; Baucom et al., 2012; Berridge, 
2019; Bush et al., 2017; Colibazzi et al., 2010; Lewis et al., 2007; Mather 
et al., 2016; Miskovic and Anderson, 2018; Phan et al., 2002; Tye, 2018). 
However, a growing body of work suggests that there is not a dedicated 
neural system that consistently and uniquely decodes these dimensions 
(Chikazoe et al., 2014; Lindquist et al., 2016; Miskovic and Anderson, 
2018; Satpute et al., 2019, 2015). Here, we suggest that progress has 
been slowed because most work in affective neuroscience assumes that 
functional activation patterns that underlie valence and arousal are 
uniform (across context), specific (involves unique circuits), and 
generalizable. We refer to this view as a simple feature detector model 
of affective experience in that certain patterns of activation are expected 
to be “on” or “off” when pleasure (or displeasure) is present vs. absent. 
Meanwhile, research in cognitive neuroscience has increasingly adopted 
predictive processing models (Keller and Mrsic-Flogel, 2018; Köster 
et al., 2020; Pereira et al., 2019; Ransom et al., 2020; Stawarczyk et al., 
2019). In contrast to traditional approaches in affective neuroscience, 
predictive processing models challenge assumptions of a stable and 

unique neural signature for affect. 
In this paper, we discuss the consequences of examining the rela

tionship between brain activity and affective experience if we assume 
that the brain is running a predictive processing model. Our goal is to 
explore the implications of predictive processing models for how 
research in affective neuroscience is done. It is not our goal to develop a 
specific model of predictive processing that describes how predictions 
and prediction errors generate subjective experience; researchers have 
provided well-developed accounts elsewhere (Allen and Friston, 2018; 
Barrett, 2017; Hesp et al., 2019; Hutchinson and Barrett, 2019; Smith 
et al., 2019b). Instead, we focus on discussing the features of predictive 
models and their practical and concrete implications for how to study 
the neural basis of affective experience in terms of experimental design, 
data analysis, and theoretical interpretation. We focus our review on the 
human functional neuroimaging literature but note that our points may 
extend to other modalities, too (e.g., EEG/ERP). 

We start with a brief review of research on the neural bases of af
fective experience with respect to macrolevel functional architecture. 
We then provide a review of predictive processing models in neurosci
ence while simultaneously weaving in their implications for research 
practice in affective neuroscience. We further address implications of 
taking a predictive processing approach for making “reverse inferences” 
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in cognitive neuroscience (Poldrack, 2015, 2011, 2006) and for under
standing internal vs. external validity. While our focus is on the neuro
science of affective experience, our conclusions may also apply more 
widely across many domains in cognitive neuroscience that aim to link 
subjective experience with neural activity. 

2. The elusive neural signatures of affective experience 

Most research in affective neuroscience starts with the premise that 
there are reliable and selective patterns of neural activation, or neural 
signatures, that underlie affective dimensions. For example, many re
searchers have attempted to identify a specific pleasure system in the 
brain (Berridge and Kringelbach, 2015; Costa et al., 2010; Kringelbach 
and Berridge, 2009; Olds, 1956; Sabatinelli et al., 2007; Wise, 1980; see 
Table 1 and Fig. 3. Such putative neural signatures of affect are often 
assumed to be invariant across time, context, and individuals. In doing 
so, most affective neuroscience studies assume a model in which the 
brain systems for affective processing operate like a simple feature de
tector in which there are reliable and specific patterns of activation in 
certain brain regions that correlate with variation in dimensions such as 
valence and arousal. As we review in this section, the supposed neural 
signatures for affective experience have remained elusive, which raises 
questions about the utility of the simple feature detector model for 
affect. Most of this work has examined the valence dimension, and so we 
focus our review accordingly. 

2.1. Activation reliability in univariate neuroimaging studies of valence 

There are now hundreds of functional neuroimaging studies that 
have examined the neural basis of valence (Lindquist et al., 2016). In the 
typical study (see Fig. 1A), participants are presented with dozens of 
affect inducing images (e.g., Canli et al., 1998; Lang et al., 1998). The 
images themselves often vary in terms of semantic content (e.g., pictures 
of bodily injuries, pollution, snakes, remarkable athletic feats, cute an
imals), and each image is shown for just a few seconds at a time. 
Functional activity is averaged across trials that evoke pleasure and 
compared against those that evoke displeasure or a neutral state to 
identify brain regions with functional activity that varies by valence 

conditions. Activity is also averaged across participants to identify 
group-level activation patterns. These analytical choices inherently as
sume invariance of responses across context (e.g., stimulus content), 
time (trials), and participants (see Fig. 1B). These choices make sense if 
one assumes a simple feature detector model for affective processing. If 
there is a neural signature for valence that operates like a simple feature 
detector, then there should be a reliable set of brain regions that are 
active during pleasure or for displeasure, irrespective of the context that 
triggers these feelings. 

Meta-analyses of neuroimaging studies in affective neuroscience do 
not provide strong support for a simple feature detector view. In a recent 
meta-analysis that included results from 397 studies, the most reliably 
activated brain region during pleasant vs. neutral task conditions (the 
amygdala) involved fewer than 26 % of the contributing contrasts, and 
similarly for unpleasant vs. neutral contrasts (also the amygdala; see 
Fig. 2A; Lindquist et al., 2016). Most other areas that met statistical 
reliability only had half as many contributing contrasts (approximately 
10–15 %). This low reliability could be due to low power. Indeed, a 
comprehensive examination of reliability of many functional neuro
imaging paradigms in social, affective, and cognitive neuroscience 
found that reliability was ubiquitously low even at the level of indi
vidual experiments (e.g., average intra-class correlation coefficient 
across paradigms was r = .40; Elliott et al., 2020). Correspondingly, 
individual experiments in affective neuroscience might also be under
powered resulting in an overall low-reliability in the meta-analysis. 

But the causes, and therefore solutions, to low reliability are not 
straightforward. A knee-jerk response to issues of reliability is to in
crease statistical power by collecting more data (more participants and 
time on task) or using better imaging equipment. However, as reported 
in Elliott et al.’s (2020) review, reliability in fMRI was not fully 
explained by task length, task type, scanner quality, or even sample size. 
Another possibility is that higher quality task paradigms (e.g., more 
evocative affect inductions) might be helpful. This could be the case, but 
even so, a focus only on these factors assumes that the underlying 
theoretical model is correct and the only problem is the signal-to-noise 
ratio. However, another reason for low reliabilitymight be that the 
traditional theoretical approach, which implies a simple feature detec
tion model for relating mind and brain, does not fully account for how 

Table 1 
Classification accuracies for fMRI MVPA studies examining valence and arousal.    

Valence Arousal  

Study Stimulus 
Modality 

Within 
Subject 

Across 
Subjects 

Across Stimuli Within 
Subject 

Across 
Subjects 

Across 
Stimuli 

Brain Space 

Baucom et al., 2012 V ~75 % ~70 % – ~75 % ~75 % – Whole 
Skerry and Saxe, 2014 V 54 % – 52 % – – – ROI 
Chikazoe et al., 2014 V, G – 55 % 54 % – – – ROI 
Shinkareva et al., 

2014 
V, A ~61 % – ns – – – Whole 

Kim et al., 2016 V, A 66 % 61 % – 60 % 61 % – Mixed 
Bush et al., 2017 V ns 59 % – ns 56 % – Whole 
Kim et al., 2017 V, A – – ~63 % / ~52 % – – – Whole / 

Searchlight 
Bush et al., 2018 V 56 % / 85 % – – 61 % / 78 % – – Whole 
Kim et al., 2020 V, A – r = 0.158 –  ns  Searchlight 
Shinkareva et al., 

2020 
V, A – 72 % 60− 90% – – – Whole 

Note. A summary of classification accuracy findings from current fMRI MVPA studies on valence and arousal. Accuracy ranges between slightly above chance (50 % in 
most cases) to high accuracy (up to 85 %) depending on the study. Classification accuracies are summarized by whether analyses and cross-validation were conducted 
within subjects, across subjects, and across stimulus modality. ’-’ indicates that classification accuracy of that type was not reported, and ’ns’ indicates that the analysis 
was performed but was not statistically significant. Notably, Bush et al. (2017) found nonsignificant classification within subjects but significant classification across 
subjects, which they suggest occurs when the algorithm learns idiosyncratic features of the training dataset that ultimately do not generalize upon cross validation 
(referred to as "anti-learning"). Bush et al. (2018) conducted separate analyses on a full set of stimuli and a subset of stimuli (suggesting that the model works well on 
normative, but not as well on subjective, affective experiences). Kim et al. (2017) conducted MVPA to classify valenced stimuli across stimulus categories across the 
whole brain (left of slash) and in specific regions identified in a searchlight analysis conducted to localize modality-general representation of valence (right of slash). 
Shinkareva et al. (2020) reported an average classification accuracy (across subjects) of 72 % and that classification accuracies across studies (which used stimuli of 
different modalities) ranged from 60 % to 90 % accuracy. For stimulus modality V = visual, A = auditory, G = gustatory. 
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the brain functions (i.e., in a predictive fashion; see Section 3). 
In addition to reliability concerns, another issue remains: there is 

also little evidence of selectivity in the brain to affective valence, at least 
when examining individual brain regions (Lindquist et al., 2016). In the 
context of affective (and cognitive) neuroscience, selectivity would be 
reflected in the ability of an indicator (e.g., neural activity) to discrim
inate between mental states of interest (e.g., pleasure or displeasure). 
Indeed, brain regions that are engaged during negative (vs. neutral) 
affect were also often engaged during positive (vs. neutral) affect as 
shown in a meta-analysis (Lindquist et al., 2016; see Fig. 2A and B) and 
in individual experiments (Bonnet et al., 2015; Chikazoe et al., 2014). Of 
course, many of these areas may simply be responsive to arousal irre
spective of valence since arousal is typically higher for both positive and 
negative valence stimuli relative to neutral stimuli in these studies. 
However, we also failed to find evidence that any areas were selectively 
engaged during positive valence or negative valence.  

There are two common responses to this issue. First, it has been 
argued that fMRI may not have sufficient resolution to resolve valence. 
Neurons that are sensitive and specific to valence (if they exist) may be 
interdigitated within a single region or even voxel (Tye, 2018). How
ever, it remains unclear whether putative neurons are indeed valence 
specific when it comes to subjective experience (see Rigotti et al., 2013 
for a discussion of how individual neurons may encode multiple dispa
rate psychological dimensions), and even so, whether they respond in 
ways that are invariant across time and context (as is often assumed). 
Second, it has been argued that valence representations are not confined 
to activation magnitude in a single or collection of brain regions, but 
instead involve patterns of activation across voxels that may span across 
brain regions (Baucom et al., 2012; Bush et al., 2017; Chikazoe et al., 
2014; Kassam et al., 2013; Satpute et al., 2015). To address this possi
bility, researchers have turned to multivariate analysis approaches 
which examine whether patterns of activation across brain regions carry 
information about valence, and which also take steps toward addressing 

selectivity in neuroimaging analysis. We address these methods next. 

2.2. Classification accuracy in multivariate neuroimaging studies 

Multivariate pattern analysis (MVPA) refers to a family of analytical 
techniques that tests whether the distribution of activation levels across 
multiple spatial locations (sets of voxels, brain regions, etc.) that may be 
used to distinguish between different conditions within a task or be
tween tasks (Haxby, 2012; Kriegeskorte et al., 2006; Norman et al., 
2006). An advantage of MVPA is that even when regional “activation 
based” approaches show no difference in the overall magnitude of 
activation, the distributed pattern of activation may nonetheless contain 
information that enables an algorithm to distinguish between task 
conditions. An algorithm may be trained to classify whether a given 
activation pattern is more likely to occur during task conditions that 
induce pleasure, displeasure, or neutral states. For example, the orbi
tofrontal cortex may not show a global difference in activation by 
valence when conducting a univariate analysis that averages the signal 
across all voxels spanning its territory (Chikazoe et al., 2014; Lindquist 
et al., 2016). However, certain voxels in the orbitofrontal cortex (OFC) 
may show a heightened response, others no response, and still others a 
diminished response when experiencing pleasure (Chikazoe et al., 
2014). This pattern of activation across voxels of the OFC may be more 
similar to that observed during other trials that evoke pleasure, and 
dissimilar to trials that evoke displeasure. As a general caveat to keep in 
mind, while MVPA can be used to classify distinct task conditions, the 
underlying reasons for successful classification is subject to experi
mental interpretation. For example, differences in semantic content 
between positive and negative stimuli may also drive successful classi
fication yet have little to do with feeling pleasure or displeasure 
(Hamzani et al., 2020; Itkes et al., 2017). 

To test whether patterns of activity contain information about 
valence, researchers have used two strategies (Haxby, 2012; Krie
geskorte et al., 2006; Weaverdyck et al., 2020). One is to test for 

Fig. 1. The typical design and analysis of factorial design experiments in affective neuroscience and their relationship with a simple feature detection model of 
subjective phenomena. 
(A) To examine the neural basis of subjective experiences of affect and emotion, the typical experimental design involves presenting participants with a sequence of 
evocative images and obtaining self-report ratings of valence or arousal. In a univariate analysis, it is common practice to average BOLD signal across trials that evoke 
the same affective response (e.g. into positive, neutral, and negative categories) and also across participants in a sample. Doing so assumes that the brain regions 
supporting affective experience are invariant across time/trials of the same condition, and across participants. (B) The assumptions of this approach are presented as 
a “simple feature detection model” for how brain activity is associated with affective experience. Negative affect evoked by different evocative stimuli at different 
moments in time assumed to evoke the same activation pattern. The brain state prior to the stimulus is typically assumed to be noise (represented brains without 
activation patterns on the left) and thus lays relatively dormant. As an aside, when examining subjective experiences of affect, different stimuli may evoke different 
affective feelings (i.e. not everyone may feel the same way toward images of cigarettes or aggressive bears). Researchers account for this variance by using subjective 
ratings to group trials together into conditions. Photograph of bear adapted from “grizzly bear” by S. Kringen, 2010 (https://www.flickr.com/photos/1816 
1271@N00/4957154697). CC BY-SA 2.0. Photograph of cigarette adapted from “cigarette” by Fried Dough [screen name], 2011 (https://www.flickr.com/ph 
otos/42787780@N04/6447342961). In the public domain. 
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representational similarity (or dissimilarity), by examining whether 
how similar or distinct one neural pattern is from another (e.g., by 
calculating a Pearson correlation of voxel activities between patterns) 
and comparing that neural similarity metric with behavioral ratings of 
valence. The other is to test for pattern classification by using a machine 
learning algorithm that learns to classify valence from the activation 
pattern. Scaling up, the same analysis could be conducted across mul
tiple brain regions, or even looking at similarity when including all 
voxels in the brain. 

The simple feature detector model assumes that there will be a 
pattern of activation that reliably and specifically decodes affective di
mensions. Consistent with this model, MVPA studies in affective 
neuroscience typically assume that activation patterns are invariant 
across trials (time) and to an extent, across contexts and participants. 

However, MVPA offers some flexibility in testing these assumptions. 
Researchers can test invariance across participants by assessing classi
fication performance when the model is trained on data from one sample 
of participants and tested on another set of participants (Table 1, “across 
subjects”). Researchers can also test invariance across contexts by 
training the model on one set of stimuli (e.g., pictures) and testing on 
another set of stimuli (e.g., other pictures not in the training set, or even 
stimuli from another stimulus modality; Table 1, “across stimulus 
types”; Chikazoe et al., 2014; Kim et al., 2017; Shinkareva et al., 2020). 

Most of the studies summarized in Table 1 do show above chance 
classification accuracies for valence and arousal. However, the findings 
also vary considerably. In terms of the brain regions identified in these 
studies, there are some consistent findings such as the anterior medial 
prefrontal cortex and limbic areas, but also many scattered findings that 

Fig. 2. Meta-analytic results from Lindquist et al. (2016). 
(A) shows the proportion of study contrasts showing activation in each brain region for pleasant (purple) and unpleasant (green) valence. Areas that showed multiple 
peaks are numbered (see Supplementary Table 1 for coordinates of global and local maxima). Inconsistent with a simple feature detector view, the areas most 
frequently associated with affective valence showed little reliability across studies. Activation in the most reliable area, the amygdala, was observed in 26 % of study 
contrasts at most. AMY = amygdala, vaINS = ventral anterior insula, dmPFC = dorsomedial prefrontal cortex, vmPFC = ventromedial prefrontal cortex, dCC = dorsal 
cingulate cortex, SMA = supplementary motor area, MTG = middle temporal gyrus, IFG = inferior frontal gyrus, IOC = inferior occipital cortex, INS = insula, STG =
superior temporal gyrus, NAc = nucleus accumbens. (B) shows brain areas consistently associated with pleasant (purple; top row) and unpleasant (green; bottom 
row) valence. Top row shows areas consistently activated across 110 positive > neutral contrasts. The bottom row shows areas consistently activated across 255 
negative > neutral contrasts. There is notable overlap between areas associated with unpleasant and pleasant valence. In particular, there is a high degree of overlap 
in temporal and some limbic areas. 
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were not consistent across most studies (see Fig. 3). Moreover, accuracy 
of the classifications was highly variable (See Table 1). Three studies 
show relatively higher levels of accuracy (>70 %; Baucom et al., 2012; 
Bush et al., 2018; Shinkareva et al., 2020) but others are only slightly 
above chance levels (52–66 %, with chance being 50 %; Bush et al., 
2017, 2018; Chikazoe et al., 2014; Kim et al., 2017, 2016; Skerry and 
Saxe, 2014). At first glance, one might assume that high classification 
accuracy is attributable to study quality or power, but a closer look 
suggests otherwise. For example, a relatively high classification accu
racy (~75 %) was observed in one study, but the experimental design 
also used repeated stimulus presentations (Baucom et al., 2012). Af
fective feelings may habituate with just three to four repetitions in fMRI 
task paradigms (Satpute et al., 2016), and so it is unclear whether 
classification is related to feelings per se. Indeed, affective judgments can 
be equally driven by the semantic evaluation (Itkes et al., 2017) or 
memory that something is pleasant (Robinson and Clore, 2002), rather 
than the feeling of pleasantness. 

In another study, valence classification accuracy was 85 % but only 
for certain stimuli that had high classification performance in the 
training sample (Bush et al., 2018). However, restricting the stimulus set 
in this way runs counter to the presumed goal of identifying stable 
patterns of activation that predict latent, subjective experiences of affect 
that generalize across stimuli. When attempting to cross-validate the 
model without constraining the stimulus set, accuracy dropped to 56 %. 
In a study optimized to examine subjective affective experience, in 
which stimuli were only presented once and classification used partici
pants’ subjective responses, classification levels were on average 55 % 
(Chikazoe et al., 2014). Taken together, these findings suggest that 
obtaining much higher classification accuracies in studies of valence 
requires using more artificial constraints in the design or analysis. 

In the most robust examination of this question to date, Shinkareva 
and colleagues conducted a cross-study analysis using data from six 
experiments. They were able to address lingering questions about 
generalization by including data from different samples, scanning sites, 
and affect induction tasks (auditory or visual affect inductions, different 
stimuli, etc.; Shinkareva et al., 2020). MVPA models were trained using 
subject-level maps of valence and arousal from five of the studies and 
tested on the left out study. Consistent with the assumptions of the 
simple feature detection model, the analysis assumed invariance across 
trials and stimulus contents (trials were averaged within pleasant and 
unpleasant conditions to generate one activation pattern map per 
participant per condition), and participants (cross-validation was 
implemented across participant groups). But even so, they reported a 
fairly high level of classification accuracy of 72 %. These findings are 
perhaps some of the most encouraging in support of the notion that a 
distributed pattern of activation may serve as a simple feature detector 
for valence. 

Yet, there remains some limitations; the study design and modeling 
assumptions are conducted in a highly constrained experimental 
context. Positive or negative valence are treated categorically and are 
the only two categories the classification algorithm must contend with. 
Thus, it is unclear how the model would perform in a more naturalistic 
and dynamic context in which valence fluctuates more continuously 
between positive, negative, and also more neutral moments. Taking 
strides in that direction, Kim and colleagues (2020) have begun to 
address this question by examining neural predictors of valence ratings 
when participants watched a lengthy TV show. They observed a signif
icant, albeit modest, prediction of valence ratings from brain activity 
(average r = .16; using leave one subject out validation). This predictive 
validity is difficult to interpret since normative (rather than subjective) 
valence ratings were used which themselves had generally low reli
ability in the study (average interrater correlation, r = 0.30). However, 
this is an important direction of work and among the first of its kind; it 
would be interesting to see whether the MVPA model trained in more 
rigid experimental settings similar to those used in the former cross- 
study analysis, are able to predict valence ratings in more naturalistic 

experiments similar to this latter study. 
There is also one other study that bears mention. Chang et al. (2015) 

only examined classification of neutral and negative affective states. 
They obtained a high cross-validated classification accuracy of >90 %, 
but it is unclear whether this classification is for valence or arousal. 
Moreover the authors make the point that negative arousal vs. neutral 
classification is modality dependent, and that they were unable to 
classify across stimulus modalities (i.e., from using picture stimuli to 
using pain stimuli) – a point that we return to later when discussing 
context dependency in predictive processing models below. 

2.3. Summary 

The simple feature detection model of affective experience suggests 
that there are reliable and specific neural representations for affective 
dimensions of valence and arousal, and these representations are, by and 
large, invariant across context (e.g., stimulus content), time (trials), and 
participants. Studies that use univariate analyses typically makethese 
assumptions of invariance by averaging findings across these di
mensions and assuming residual variance is error. However, these 
findings have not shown evidence of high reliability or specificity in the 
neural representations of valence. Multivariate analyses are more flex
ible in the assumptions they must make, but often make similar as
sumptions of invariance of functional activity across context and time/ 
trials, and in some instances, invariance across individuals as well (but 
see Table 1, within vs. across subject columns). Overall, the findings are 
currently mixed and it is unclear whether this path of work will even
tually support something akin to a simple feature detection model of 
valence. The more successful studies use highly constrained experi
mental contexts and more rigid analytical assumptions leaving it unclear 
whether the findings will generalize to modeling the neural basis of 
affective experiences in everyday life situations. 

We suggest that the reason for low reliability may not just be due to 
low signal-to-noise issues or statistical power. Rather, the underlying 
theoretical model that guides most analysis in fMRI studies may also be 
too rigid. Predictive processing models challenge assumptions about 
invariance of functional activity implied by the simple feature detector 
model. In doing so, predictive processing offers new directions for af
fective neuroscience that may enable the field to overcome its current 
hurdles (e.g., low reliability, mixed evidence for specific neural signa
tures). In the next section, we provide an overview of predictive pro
cessing models in neuroscience and discuss their implications for 
research in affective neuroscience specifically. 

3. Predictive processing models 

Predictive processing models originated in part as a computationally 
efficient data compressing technique in computer science (i.e., predic
tive coding; Atal, 2006; Elias, 1955). Applied to neuroscience, predictive 
processing models offer accounts for how information is shared in the 
brain in a metabolically efficient (Friston, 2010; Rao and Ballard, 1999; 
Sterling and Laughlin, 2015) and neurobiologically plausible (Bastos 
et al., 2012) manner. These models posit that the brain does not 
passively wait to receive stimulation, but instead is continuously making 
predictions about the future. The brain generates predictions about its 
future. To the extent that there is a mismatch between those predictions 
and what occurs, this mismatch is transmitted as prediction error. 

In one neural instantiation of this view, the activity in one type of 
neuron (prediction units) encodes the expected activity of other neu
rons. Prediction units communicate this expected activity to those 
neurons via top-down (i.e., feedback) connections as predictions (see 
Fig. 4). A second type of neuron (prediction error units) computes the 
mismatch between the predictions and signals generated by sensory 
inputs as prediction error. The prediction error unit relays this signal 
back to the prediction unit via bottom-up (i.e., feedforward) connec
tions. The arrival of a prediction error indicates that the prediction was 
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incorrect. The prediction unit can then use this input to update its own 
activity in order to derive a more accurate prediction of neuronal ac
tivity that is conveyed back to the prediction-error unit. If the sensory 
input remains unchanged, then the updated prediction will effectively 
minimize prediction-error and no further updates will be required until 
changes in sensory input elicit novel prediction-errors. Finally, the in
fluence of prediction or prediction error signals is also weighted by the 
reliability or precision (inverse variance) of those signals. Thus ex
changes of predictions and prediction errors enable prediction units to 
update their activity so as to minimize overall prediction error (Arnal 
and Giraud, 2012; Friston, 2005). 

Predictive processing is thought to be implemented within a loosely 
hierarchical (or more accurate heterarchical; see Pessoa, 2019) struc
ture. Each level of the hierarchy predicts the activity of the adjacent 
lower level, while relaying prediction-errors to the immediate upper 
level (see Fig. 4; Friston, 2008). Predictions and prediction errors are 
thought to be broader over space and time and more abstract further up 
versus lower down. Over time, the minimization of sensory 
prediction-errors may support perceptual learning by entraining pre
diction units to anticipate the statistical regularities of the environment 
(Friston, 2005), including the internal environment or the body (Barrett 
and Simmons, 2015; Seth, 2013). Predictions do not directly predict the 
statistical regularities of the environment per se, rather they reflect 
statistical regularities in the form of a generative model that predicts 
future neural activity, ultimately enabling the brain to develop a rep
resentation of (its neural activity with respect to) the state of the body 
and the world (Gładziejewsk, 2016). 

It is important to clarify that predictive processing models in 
neuroscience describe communication between neurons; they are not 
models of the mind (Clark, 2013; Friston, 2010; Gilbert and Li, 2013; 

Kveraga et al., 2007). This can lead to some ambiguity when using the 
terms “prediction,” “expectation,” “surprise,” etc., which have been used 
to describe both mental experience and neural processes. The psycho
logical state of “having an expectation” or of “being surprised” are not 
the same as prediction and prediction error at the neural level of analysis 
(Clark, 2013). Yet, despite not being about subjective experience, pre
dictive processing models can offer insights into how representational 
content emerges from the brain. For example, most theories suggest that 
predictions give rise to subjective experiences, whereas prediction errors 
are presumably processed unconsciously until the error is incorporated 
in a new prediction (i.e., model updating; Barrett and Simmons, 2015; 
Chanes and Barrett, 2016; Seth et al., 2012; Seth and Friston, 2016). 

In this section, we review three aspects of predictive processing 
models including and their implications for affective neuroscience: (i) 
neural activity reflects a dynamic flow of predictions (including the 
precision of predictions) and prediction errors that occur throughout the 
brain (Bar, 2007; Clark, 2013; Friston, 2010; Hutchinson and Barrett, 
2019; Rao and Ballard, 1999), (ii) neural activity is temporally depen
dent such that current brain activity is dependent on prior brain activity 
(Kiebel et al., 2008; Ploner et al., 2010), and (iii) the brain is hierar
chically organized in a way that provides a structural foundation for a 
predictive processing architecture (Bastos et al., 2012; Chanes and 
Barrett, 2016; Clark, 2013; Friston, 2010, 2005; Goulas et al., 2018; Rao 
and Ballard, 1999; Sterling and Laughlin, 2015). Collectively, these 
features challenge the assumptions of invariance by context, time, and 
person that underlie the simple feature detection model. 

3.1. Neural activity is a function of prediction and prediction error 

A large body of work suggests that neural activity consists of 

Fig. 3. Overview of prior studies using MVPA to examine valence classification. 
The brain regions that support valence classification vary considerably from study to study. Certain areas, such as the anterior medial prefrontal cortex may be 
implicated in many studies, but there are also many areas that are implicated in valence classification for a given study but that are not consistently observed across 
studies. (A) Baucom et al. (2012, Figure 6B) showed a highly distributed pattern of informative voxels for valence classification spread across cortical lobes using a 
whole brain approach. (B) Skerry and Saxe (2014, Figure 6) show significant valence classification across stimulus types (faces and situations) using voxels in a 
predefined ROI of the anterior medial prefrontal cortex. (C) Chikazoe et al. (2014, Fig. 5C) also shows significant valence classification across modalities in pre
defined ROIs in the anterior medial and lateral prefrontal cortex (green), but also modality-specific valence classification for evocative visual (red) and gustatory 
(yellow). (D) Kim et al. (2016, Fig. 3B) showed valence classification in four brain regions including the perigenual cingulate cortex, superior temporal gyrus, middle 
frontal gyrus, and precuneus. Kim et al. (2016) examined pre-determined voxels at a group level identified by an initial whole brain searchlight across individual 
participants. (E) Bush et al. (2017, Figure 3) illustrates encoding parameters from a whole-brain SVM of valence. (F) Kim et al. (2017, Figure 7) used a whole brain 
searchlight approach and identified voxels informative for classifying valence located in the insula, superior temporal cortex, precuneus, and thalamus. (G) Bush 
et al. (2018) used a whole brain approach showing valence informative voxels along the cortical midline including the anterior medial prefrontal cortex, poster 
cingulate and precuneus, and also in the lateral prefrontal and parietal cortex. (H) Unlike other studies, Kim et al. (2020, Figure 5) had participants watch a lengthy 
movie that may preserve more spatiotemporal continuity (albeit used normative valence ratings). Using a searchlight approach, Kim et al. (2020) found that the 
dorsomedial PFC, insula, and superior temporal cortex and temporoparietal cortex carry information correlating with valence. (I and J) Shinkareva et al. (2020, 
Figures 2 and 3, respectively) was the only study to examine MVPA across multiple studies spanning task paradigms, two induction modalities (auditory and visual), 
different participant groups, and different scanning sites. Informative voxels, identified in a whole brain analysis, were located in the superior frontal gyrus, dor
somedial and cingulate prefrontal cortex (I). They also systematically tested for brain regions that provided information about valence across-modalities and 
observed activity in some of the same areas (J). Note: Results from Shinkareva et al. (2014) are not depicted since they were conducted only at the subject level, but 
areas that appear to be informative for classifying valence across participants included the anterior temporal cortex and occipital cortex. 

Fig. 4. A schematic depiction of a predictive 
processing neural architecture. 
Contemporary models suggest that predictions 
and prediction errors are hierarchically orga
nized. Prediction units (Pr; blue nodes) located 
primarily in deep cortical layers send pre
dictions down the cortical hierarchy via feed
back connections (black curved arrows). 
Prediction error units (PE; light red nodes) 
located in superficial layers send prediction 
errors up the cortical hierarchy via feedforward 
connections (red curved arrows). Circular ar
rows above each node reflect precision- 
weighting. Adapted from Goulas et al. (2018; 
Figure 1B).   
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predictions and prediction errors that are ubiquitous throughout the 
brain. Prior information serves as predictions that drive activity across 
multiple domains including visual (Alink et al., 2010; den Ouden et al., 
2010; Egner et al., 2010; Kok et al., 2017, 2012, 2011; Meyer and Olson, 
2011; Murray et al., 2002; Summerfield et al., 2008) auditory (Blank and 
Davis, 2016; Wacongne et al., 2012), somatosensory (Atlas and Wager, 
2014; Bingel et al., 2011; Freeman et al., 2015; Kong et al., 2009; Lui 
et al., 2010; Wagner et al., 2011; Watson et al., 2009), and affective 
processing (Belova et al., 2007; Johansen et al., 2010; Pessoa et al., 
2002; Sussman et al., 2017). Given the ubiquity of predictive processing 
across multiple domains, it is striking that the vast majority of fMRI 
experiments in affective neuroscience are actually designed to limit 
predictability. 

In a typical fMRI study in affective neuroscience (see Fig. 1A), 
evocative stimuli are presented with minimal context, in a randomized 
order, and with jittered temporal intervals. If one assumes a simple 
feature detector model for valence, then these choices make perfect 
sense — they serve to isolate and investigate the functioning of the 
simple feature detector for affect by eliminating putative confounding or 
moderating influences (see Table 2). However, from a predictive pro
cessing view, the task is processed by a brain that is nevertheless 
generating predictions and prediction errors throughout. Presenting 
evocative stimuli devoid of context, in a randomized order, and with 
unpredictable timing does not eliminate prediction and prediction error. 
Instead, it only precludes their systematic investigation and relative 
contributions in constructing subjective experience. As a consequence, 
the findings reflect the neural basis of affective processing in the unique 
case of highly unpredictable and atypical environments. It calls into 
question the validity of these findings for understanding the neural basis 
of affective experiences in everyday life. 

If predictions are constitutive of affective experience, then experi
mental design may benefit by systematically investigating how pre
dictability and unpredictability contribute to affective experience and 
its neural bases across multiple domains. Importantly, the ubiquity of 
predictions and prediction errors across the brain suggest that what 
predictions are “about” can span many dimensions and features (spatial 
location, stimulus content and temporal sequence, etc.). In turn, this 
raises the question of how predictions (and prediction errors) across 
these different dimensions and features contribute to affective experi
ence. To provide examples of how affective neuroscientists might 
approach these research questions, we provide a more detailed review 
below of a small set of cognitive neuroscience studies to illustrate how 
predictive processing models have been used in the study of sensory 
perception (where most of this work is conducted). We also highlight 
relevant work in affective neuroscience that has not typically been 
construed as research on predictive processing, but nonetheless in
corporates many features of predictive processing models (e.g., stimulus 
predictability, prediction error). 

In their seminal study, Rao and Ballard (1999) used computational 
simulations to show that predictive processing models could better ac
count for neural activity in early visual cortex in comparison to a simple 
feature detector model. They computationally modeled the interactions 
between V1 and V2 assuming a predictive or non-predictive processing 
architecture by including or excluding predictive signals from V2 in 
accounting for V1 activity in their simulation. In particular, they 
examined “endstopping” behavior of neurons. End stopping is a phe
nomenon in which a neuron that fires robustly to a stimulus in its 
receptive field (e.g., a line segment that is only as long as the neuron’s 
receptive field) shows a markedly diminished response if the line is 
simply extended in space (i.e., a line segment that traverses through but 
also beyond the neuron’s receptive field). According to a simple feature 
detection model, there should be no difference in response since the 
portion of the line segment that is within the neuron’s receptive field is 
identical in both cases. However, from a predictive processing 
perspective, such shortened line segments are rare in natural scenes. 
While V2 neurons drive the prediction of spatial continuity of line 

segments, and the firing of V1 neurons actually reflects prediction error 
in the case when the V2 prediction is violated. These findings suggest 
that neurons in V1 are not necessarily firing in proportion to visual 
stimuli in their receptive fields (i.e., patches of retina that are innervated 
by retinal neurons). Rather, these findings suggest that V1 activity is a 
function of (spatial) predictions and prediction error. 

Table 2 
Study design choices viewed under simple feature detector vs. predictive pro
cessing models.   

Simple Feature Detector 
View 

Predictive Processing View 

Study Design 
Elements   

Randomized Stimulus 
Presentations 

Assumes expectancy 
about stimulus content (e. 
g., valence) is a confound. 

Assumes expectations (or 
predictions) about stimulus 
content are constitutive of 
the phenomena. 

Randomizing stimulus 
presentation order isolates 
the effect of the affective 
stimulus from the effect of 
expectancy. 

Randomizing stimulus 
presentation order 
introduces a confound by 
inflating prediction errors 
and reducing the influence 
of predictions about 
stimulus content in 
affective processing. 

Jittered Interstimulus 
Intervals 

Assumes anticipation of 
stimulus onset is a 
confound. 

Assumes expectations (or 
predictions) are part of a 
trajectory that is perturbed 
by the stimulus. 

Jittering stimulus onset 
isolates the effect of an 
affective stimulus from 
the effect of anticipation. 

Jittering stimulus onset 
introduces a confound by 
inflating prediction errors 
and reducing the influence 
of predictions about 
stimulus onset in affective 
processing. 

Equal Frequency of 
Stimulus Categories 
(i.e., Uniform 
Baserates) 

Assumes that an unequal 
number of stimuli from 
categories of interest (e.g., 
positive vs. negative vs. 
neutral valence) 
introduces a confound. 

Assumes that predictions 
are informed by the base 
rates of different kinds of 
stimuli observed in 
everyday life. 

Equal frequency of stimuli 
from different categories 
of interest isolates the 
effect of an affective 
stimulus from unbalanced 
frequency of stimuli. 

Equal presentation of 
stimuli introduces a 
confound by conflating 
unnatural base rates of 
valenced stimuli with the 
effect of the stimuli. 

Decontextualized 
Stimuli 

Assumes that contextual 
factors such as goal- 
relevance, situational, 
embedding of stimuli, 
sensory modalities of 
stimuli, etc. are 
confounds. 

Assumes that contextual 
factors influence 
predictions about a 
stimulus. 

Presenting 
decontextualized stimuli 
isolates the effect of an 
affective stimulus from 
contextual factors. 

Decontextualizing stimuli 
introduces a confound by 
conflating inflated 
prediction errors by 
removing information 
relevant for generating 
predictions about the 
stimuli. 

Note: The table outlines how theoretical assumptions of simple feature detection 
and predictive processing models influence experimental design choices. When 
studying the neural basis of affective experience in particular, expectancies 
about the stimulus content, timing, and frequency, are often viewed as sources of 
potential confounds when adopting a simple feature detection model. Care is 
taken to distribute their impact evenly across experimental conditions in a 
factorial design. However, in a predictive processing model, predictions (and 
even the precision of predictions) are considered to be constitutive of many 
psychological phenomena including affective and emotional experience. The 
design choices from the simple feature detection model introduce untenable 
challenges to external validity. 
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Work by Emberson et al. (2015) and Egner et al. (2010) further 
demonstrate that the brain may generate predictions about stimulus 
expectations on a temporal dimension. For example, Emberson et al. 
(2015) found evidence that functional activity in the occipital cortex is a 
function of prediction and prediction error signals in six-month old in
fants. Infants were presented with an auditory stimulus (sound of a 
rattle) that predicted the onset of a visual stimulus (picture of a cartoon 
face) while functional activity in the occipital cortex was measured 
using functional near infrared spectroscopy (fNIRS). On the key trials, a 
visual stimulus was not shown even though it was expected to be shown 
on the basis of the sounds. A simple feature detection model would 
suggest that activity in occipital cortex should track with the presenta
tion of visual stimuli. However, the results were more consistent with a 
predictive processing account: there was greater activity in occipital 
cortex even when the visual stimulus was not presented, so long as it was 
predicted to be shown. Similarly, Egner et al. (2010) found that semantic 
cues that predicted or did not predict a stimulus modulated neural ac
tivity. In their study, participants were shown expected and unexpected 
face stimuli while tracking activity in the “fusiform face area” (FFA; 
Kanwisher et al., 1997). The FFA was sensitive to expectation: it showed 
greater activation when a face was expected to be shown regardless of 
whether face was actually shown. And the FFA was sensitive to pre
diction error. In particular, the FFA responded robustly when partici
pants did not expect to see a face but were shown one anyway. When 
comparing model predictions, the pattern of findings was overall more 
consistent with a predictive processing model than a simple feature 
detection model for face stimuli (Egner et al., 2010; see also Apps and 
Tsakiris, 2013). 

Finally, many studies have examined how expectations about affec
tive stimuli shape neural responses during pain (Atlas and Wager, 2014; 
Benedetti et al., 2011; Lui et al., 2010; Ploghaus et al., 1999; Wager 
et al., 2004) and reward learning (Bayer and Glimcher, 2005; Hampton 
et al., 2007; O’Doherty et al., 2003, 2001; Ribas-Fernandes et al., 2011; 
Rolls et al., 2008; Schultz et al., 1993; Suri and Schultz, 2001). .In these 
studies on pain and reward learning, induced expectations are often 
learned as a part of the experimental procedure (e.g., via classical or 
operant conditioning). For example, a participant might undergo a 
conditioning procedure to associate a stimulus with a subsequent 
increased or decreased pain intensity (e.g., Benedetti et al., 2011). 
Similarly, in reward learning, participants might undergo conditioning 
to associate a neutral stimulus (e.g., a shape) with some reward or 
punishment (e.g., financial gains or losses; e.g., Hampton et al., 2007). 
Researchers then examine neural activity when these expectations are 
violated such as when pain intensity is not reduced or an expected 
reward does not materialize. Using this type of paradigm, studies on 
pain have found that expectations about pain strongly modulate activity 
in response to a nociceptive stimulus (Atlas and Wager, 2014; Freeman 
et al., 2015; Lui et al., 2010). Similarly, expectations of reward strongly 
modulate activity in response to a rewarding stimulus (e.g., de la 
Fuente-Fernández et al., 2002; O’Doherty et al., 2004; Pagnoni et al., 
2002). 

Of note, studies on pain and on reinforcement learning have not 
typically been understood through the lense of predictive processing 
models (for a few notable exceptions in pain see Büchel et al., 2014; 
Hechler et al., 2016; Saab and Barrett, 2017 and for reward learning, see 
Friston et al., 2009, 2015). While they share conceptual similarities with 
predictive processing models they also have important differences. 
Reinforcement learning models are commonly used in affective sci
ence to explain how agents make choices based on feedback from re
wards and punishments (Bush and Mosteller, 1951a, 1951b; Dayan and 
Niv, 2008; Pearce and Hall, 1980; Rescorla and Wagner, 1972; Sutton 
and Barto, 2018). As such, these models also have traditionally had 
difficulty explaining responses to non-valenced stimuli or explaining 
how agents differentiate between stimuli that might have similar reward 
values (e.g., ice cream vs. chocolate; Niv and Schoenbaum, 2008). 

In contrast, the main focus of predictive processing models is to 

explain brain activity by modeling it as neurons predicting activity in 
other neurons across scales in the neural hierarchy (Clark, 2013; Friston, 
2010; Gilbert and Li, 2013; Kveraga et al., 2007; we elaborate on this 
idea in Sections 3.2 and 3.3). Therefore, predictive processing models do 
not presume explicit rewards or punishments. Rather, “rewards” in 
predictive processing are derived from increased metabolic savings 
(Sterling and Laughlin, 2015) or minimized differences between the 
expected and actual sensory inputs (that are relevant for survival; Fris
ton, 2010) when these predictions are accurate. The gist is that evolution 
would favor metabolically efficient neural communication, and predic
tive processing provides a parsimonious model of such communication 
(Sterling and Laughlin, 2015). 

Thus, whereas there are reinforcement learning tasks in congitive 
neuroscience, in predictive processing models predictions and predic
tion errors occur constantly and thus during all tasks. To be sure, to study 
predictive processing models experimenters often design tasks that 
make stimulus events more or less predictable, as illustrated above in 
studies by Egner et al. (2010) and Emberson et al. (2015), but it is not 
necessary to organize studies using temporally predictable sequences of 
trials. In Rao and Ballard’s model of V1 and V2 interactions, for 
example, prediction and prediction error about lines extending in space 
occur when presented with any image — including images that were 
never seen before. In work on pain (Atlas and Wager, 2014; Benedetti 
et al., 2011; Lui et al., 2010; Ploghaus et al., 1999; Wager et al., 2004) 
and reward learning (Bayer and Glimcher, 2005; Hampton et al., 2007; 
O’Doherty et al., 2003, 2001; Ribas-Fernandes et al., 2011; Rolls et al., 
2008; Schultz et al., 1993; Suri and Schultz, 2001), the predictions might 
be derived from semantic cues (as in the case of verbal instruction) or 
recently learned associations stored in memory (as in the case of con
ditioning). These examples underscore the point that during any 
experimental fMRI study, predictions are occurring ubiquitously. They 
may concern stimulus attributes (from low level sensory features to 
object perception to complex social interactions), stimulus timing (even 
when “jittered”), expected motor responses (button presses, eye move
ments), expected somatosensory stimulation (e.g., feeling of making a 
button press), predicted stimulus sampling given motor responses (e.g., 
from eye movements, pupil dilation), and also visceral changes (e.g., 
changes in heart rate, respiration), etc. A simple feature detection model 
for affective processing effectively ignores these sources of systematic 
variance. In contrast, a predictive processing account suggests that 
modeling the distribution of prediction and prediction error is critical to 
understanding how the brain creates affective experience. 

3.2. Neural activity is temporally dependent 

From a predictive processing view, the neural response to a stimulus 
reflects a “perturbation” from ongoing neural activity rather than an 
“elicitation” of activity by the stimulus, which has the mistaken 
connotation that a brain region lies dormant until its activation is eli
cited by a stimulus (see Fig. 1B for an example of this assumption of 
dormancy) and Fig. 5. Predictions and prediction errors occur continu
ously as the brain receives new information and updates its predictions 
accordingly (see Fig. 5). As such, there are temporal dependencies that 
should be considered when conducting experiments in affective neuro
science. In particular, neural activity in response to a stimulus must be 
examined with respect to the pre-stimulus brain state. Here, we define a 
brain state as neural activity throughout the brain at a given instance. 
This brain state is a function of continuously updated predictions and 
ensuing prediction errors that occur over time. 

fMRI studies in affective neuroscience often ignore temporal 
dependence by assuming that individual trials are independent and 
identically distributed events (as is commonly assumed when using 
standard general linear models to fit the fMRI data). The neural response 
“elicited” during stimuli presented in a given trial is assumed to be in
dependent from the response elicited by previous trials, and thus, re
sponses are effectively averaged across trials. Moreover, expectations, 

K.M. Lee et al.                                                                                                                                                                                                                                   



Neuroscience and Biobehavioral Reviews 131 (2021) 211–228

220

non-independence, and “carry-over” effects that occur across trials in an 
experiment are not only ignored analytically, they are viewed as a 
nuisance variable. To control for them, experimenters typically 
randomize (and jitter) the stimulus presentation order. These design 
choices are reasonable when assuming a simple feature detection model, 
but from a predictive processing view, the natural environment of the 
brain is one in which current neural activity is contingent on prior neural 
activity (see Table 2 for a comparison of the two views). This means that 
the history of past events (e.g., previous experimental trials) ought to be 
accounted for when modeling the pattern of neural activity during any 
given event (e.g., the current experimental trial). 

There are two main sets of work indicating that temporal de
pendencies should not be overlooked. The first set of work challenges 
the idea that there is a stable “return to baseline” after presentation of an 
evocative stimulus. According to the simple feature detection model, the 
brain returns to baseline at which point a fresh response can be elicited 
that is independent of the prior trial. Despite the ubiquity of this notion 
in guiding much current research, these baselines can actually be highly 
variable. For instance, the duration of influence of evocative stimuli on 
behavioral measures, peripheral physiology, and neural measures varies 
considerably by person and experimental paradigm (e.g., from a few 
hundred milliseconds to several seconds, or even several minutes; Gar
rett and Maddock, 2001; Lapate and Heller, 2020; Walter et al., 2009). 
These findings indicate that a so-called return to baseline may be person 
and situation dependent, but rarely are these factors taken into 
consideration when analyzing fMRI data. 

One can go even further by questioning the assumption of a stable 
baseline (Spivey, 2008). Indeed, it is unclear what a “return to baseline” 
ought to look like, and whether a stable baseline actually exists. His
torically, the idea that the baseline state involved low-levels of activity 
spread uniformly throughout the brain gave way to the finding that a 

certain set of “default mode” brain regions were actually more active 
during rest than during task engagement (Raichle, 2015; Raichle et al., 
2001). Some of the key regions of the default mode network include 
portions of the anterior medial prefrontal cortex, ventrolateral pre
frontal cortex, posterior cingulate complex, hippocampus and other 
medial temporal lobe structures, and lateral temporal and parietal areas 
(Yeo et al., 2011). These areas are reliably activated during fixation in 
comparison to task engagement (and meaningfully activated insofar as 
they are consuming metabolic energy as measured in PET; Raichle et al., 
2001). However, this “default mode” is not an inert baseline or “at rest” 
with respect to psychological function. While default mode areas often 
have reduced overall activity during certain cognitive and attentional 
performance tasks, they also have relatively greater activity during 
certain social cognitive tasks (even with respect to a fixation baseline; 
Davey et al., 2016; Iacoboni et al., 2004). Moreover, the default mode 
network also traverses through multiple functional connectivity states 
over time (as do all other large-scale functional networks; Ciric et al., 
2017; Reinen et al., 2018). These findings suggest that the brain does not 
return to a stable functional baseline, at least when it comes to the 
spatiotemporal resolution of fMRI data. 

The second set of work suggesting that temporal dependencies 
should not be overlooked are findings concerning the “pre-stimulus 
brain state”. Given that the pre-stimulus period likely consists of 
different brain states in different moments (rather than a stable base
line), it raises the question of whether the pre-stimulus brain state has 
implications for the brain-behavior relationship. Research across mul
tiple domains and measurement modalities are consistent with this 
notion. In memory research, incidental prestimulus fluctuations in 
neural activity correlate with the likelihood of remembering of the 
stimulus in studies using EEG (Otten et al., 2006), fMRI (Addante et al., 
2015), and even intracranial recording (Sweeney-Reed et al., 2016). In 

Fig. 5. Brain state transitions and degeneracy in predictive processing models. 
Figures (A) and (B) depict two different brain state trajectories perturbed by the same stimulus. The red dots depict patterns of neural activation. In predictive 
processing models, an evocative stimulus (e.g., the bear) introduces a perturbation to an ongoing trajectory of brain activation (represented by brains on the left). The 
pattern of neural activity that follows stimulus onset (the post-stimulus state, t1) will depend both on the stimulus and the pre-stimulus brain state (t0). Note that 
patterns of neural activity in the pre-stimulus and post-stimulus brain states differ in Figures (A) and (B), but they still relate with an experience of negative affect 
following the same stimulus. This many-to-one relationship between brain activation patterns and subjective experience categories is referred to as degeneracy. 
Finally, in predictive processing models, the brain does not return to baseline, but rather continues along the new trajectory introduced by the perturbation (the 
stimulus) and endogenous ongoing activity. This results in different post-trial (t2) brain states. Photograph of bear adapted from “grizzly bear” by S. Kringen, 2010 
(https://www.flickr.com/photos/18161271@N00/4957154697). CC BY-SA 2.0. 
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social neuroscience, incidental prestimulus fluctuations in BOLD signal 
in the dorsomedial prefrontal cortex increases the ease with which 
people process the social qualities of a stimulus (Spunt et al., 2015). In 
pain research, pre-stimulus functional connectivity of the BOLD signal 
correlates with whether a subsequently presented stimulus is experi
enced as painful or not (Ploner et al., 2010). According to predictive 
processing models, pre-stimulus activity may contain informative pre
dictions that anticipate incoming information (Brodski-Guerniero et al., 
2017). To test if that is the case, a particularly noteworthy study found 
that pre-stimulus MEG activity decoded the content of an expected 
stimulus, specifically, the orientation of lines in a visual stimulus, and 
was associated with improved behavioral performance (Kok et al., 
2017). 

Taken together, a predictive processing approach orients researchers 
to examine neural activity as a function of how a stimulus perturbs an 
ongoing brain state (see Fig. 5). The brain does not lie quiescent 
awaiting an evocative stimulus that will elicit a specific and unique 
neural response. Rather, the brain is in motion (Spivey, 2008), a stim
ulus perturbs its trajectory, and the observed functional activity in 
response to a stimulus reflects a deviation in the trajectory (Friston, 
2008). The research we summarized above focuses primarily on rela
tively short time-scales on the order of a few seconds. However, pre
dictive processing models are thought to “scale up” to much longer time 
intervals. The cumulative set of predictions are developed across a 
person’s lifespan (Barrett and Simmons, 2015; Pereira et al., 2019; 
Sterling and Laughlin, 2015) and may be used at different time scales 
(Baldassano et al., 2018, 2017; Clark, 2013; Foster et al., 2016; Hasson 
et al., 2015; Honey et al., 2017, 2007; Seth et al., 2012; Zacks et al., 
2007). Predictions developed over years will vary between individuals 
as a function of their personal developmental history and will likely be 
hard to modify (for a more in-depth take on the relationship between 
development and predictive processing, see Pereira et al., 2019). 

The nature of temporal dependence in predictive processing models 
suggests several important directions for research in affective neuro
science. Future task-based fMRI studies might model neural activity 
during evocative stimuli as perturbations (rather than elicitations) from 
ongoing activity by incorporating the pre-stimulus brain state into the 
model. There have also been developments in using state space models. 
These models formally examine transitions in brain states over time and 
how the trajectory of brain states is perturbed by a stimulus (see 
McIntosh & Jirsa, 2019; Najafi et al., 2017; Pessoa, 2019). With respect 
to individual difference variables in social and affective neuroscience 
(Dubois and Adolphs, 2016), from a predictive processing view, indi
vidual differences stem in part from subject-specific predictions that 
have been developed over a long period of time. Such predictions may 
be more influential when unchecked by sources of prediction error 
stemming from the environment — in other words, predictions are more 
likely to be influential under conditions of reduced environmental 
constraint (e.g., uncertainty, ambiguity, reduced structure, or dearth of 
stimulus inputs). Rather than examining how individual difference 
measures relate with neural activity in response to relatively more 
concrete stimuli as many studies do (e.g., how trait anxiety relates with 
neural activity during “fear” faces), research may focus instead on cases 
in which the brain may rely on more deeply rooted predictions. That is, 
research may focus on how individual difference measures relate with 
pre-stimulus activity (e.g., Cuthbert et al., 2003; Ploner et al., 2010), 
activity during task conditions involving reduced environmental con
straints (e.g., Hertel, 2000; Petro et al., 2018; Sussman et al., 2020), and 
the heterogeneous functional dynamics that occur during “rest” (e.g., 
Ran et al., 2017; Rashid et al., 2014; Reinen et al., 2018; Sakoğlu et al., 
2010; Wu et al., 2015). 

3.3. Predictive processing and the organization of the cortex 

Decades of research have shown that many connections between 
cortical regions are hierarchically organized (Barbas, 2015; Barbas and 

Rempel-Clower, 1997; Felleman and Van Essen, 1991; Markov et al., 
2014; Maunsell and Van Essen, 1983). Technically, it may be more ac
curate to describe the organization of the brain as heterarchical (Pessoa, 
2019; see also Bruni & Giorgi, 2015; McCulloch, 1945; and Norman 
et al., 2011). Unlike a hierarchy, a heterarchy does not assume a fixed 
or static top-down relationship between brain regions. Rather, in a 
heterarchy the functional relationship between brain regions is flexible 
and bidirectional. In a heterarchy, whether one brain area is superor
dinate, subordinate, or equal in ranking to another may be determined 
by context (Pessoa, 2019). Further, brain regions near the bottom may 
have direct connections on areas near the top without going through 
intermediate levels and vice versa (Norman et al., 2011; Pessoa, 2019). 

The loosely hierarchical (or heterarchical) organization is well suited 
to support a predictive processing architecture (Bastos et al., 2012; 
Chanes and Barrett, 2016; Clark, 2013; Friston, 2010, 2005; Sterling and 
Laughlin, 2015). Rao and Ballard’s (1999) original predictive coding 
model, for example, was predicated on the hierarchical relationship 
between V1 and V2, with predictions flowing down from V2 to V1 and 
prediction errors flowing in the opposite direction. Predictive processing 
models have extended this principle to the cortex more broadly (Bastos 
et al., 2012; Huang and Rao, 2011). Brain regions lower in the hierarchy 
implement more spatiotemporally narrow predictions (Hasson et al., 
2015; Kiebel et al., 2008; see also Finlay and Uchiyama, 2015) – for 
example, predictions of low-level activity in receptive fields of visual 
neurons on the order of milliseconds. In contrast, predictions originating 
in higher levels of the hierarchy are implementing spatiotemporally 
wider predictions, and may concern processes such as those involved in 
object recognition. These predictions may last over longer intervals of 
time (e.g., seconds) compared to predictions from lower levels in the 
hierarchy. 

The organization of psychological processes are thought to parallel 
this structure. For example, when reading a book, predictions in early 
visual cortex may concern the expected sizes, shapes, and colors of ink 
on the page, and slightly further up the hierarchy, the letters and words 
that make up the text; even further up, predictions may be related to the 
narrative flow or expectations regarding the meanings conveyed by each 
sentence (Price and Devlin, 2011). The act of reading is therefore 
thought to involve a multilayer hierarchy of predictions: predictions at 
higher levels are not independent of predictions made at relatively low 
levels, and prediction errors signals from lower levels may eventually 
travel upward to much higher levels. 

A similar hierarchical arrangement has been proposed in social and 
affective neuroscience (Barrett, 2017; Satpute et al., 2019; Spunt et al., 
2016, 2011). Given the same input (e.g., sensory inputs regarding the 
actions of another person), the input may be conceptualized in a more 
lower-level, or concrete way (e.g., the person is shaking their fist back 
and forth) or in a higher-level, more abstract way (e.g., the person is 
angry, or the person is threatening someone). More abstract represen
tations tend to accommodate a wider array of lower-level sensory pos
sibilities at the cost of more precise details (i.e., a person may perceive 
shaking a first, yelling, or even smiling inappropriately as sensory inputs 
conveying threat or anger). It is likely that on a neural level, too, areas 
higher up the hierarchy may be less precise in their predictions by 
creating gist-level representations and discarding finer grain details 
(Bar, 2004, 2003; Bar et al., 2006; Kveraga et al., 2007; Finlay and 
Uchiyama, 2015). To consider an example in affective neuroscience, a 
more abstract, and less specific, conceptual representation of fear here 
may actually be advantageous in reducing prediction error in the 
long-run. If the representation of “fear” involves a highly specific pre
diction, for example to expect freezing, then moments of fear that do not 
include freezing would evoke considerable amounts of prediction error. 
A representation of fear that is not tailored to a specific behavior might 
result in more prediction error for specific instances of fear involving 
freezing, but it is also robust to instances of fear involving other be
haviors (e.g., fleeing, or even attacking, smiling, or yelling in fear). 

This hierarchical, predictive architecture suggests a different 
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mapping for the neural bases of affect and emotion than proposed by 
more traditional models. For emotion categories, traditional models 
have long assumed that discrete emotions like anger and fear reside in 
“low level” subcortical and limbic/paralimbic cortical structures (Dal
gleish et al., 2009; Damasio and Carvalho, 2013; Kober et al., 2008; 
MacLean, 1990; Panksepp, 1982; Papez, 1937; Rolls, 1990; Smith and 
DeVito, 1984). Alternatively, in predictive processing models, repre
sentations of discrete emotions are considered to involve a multilevel set 
of predictions that span across the brain (Barrett, 2017; Satpute and 
Lindquist, 2019). Low-level predictions may drive specific motor actions 
(including organized motor actions such as freezing or attack) and their 
anticipated sensory consequences (i.e., active inferences; Adams et al., 
2013; Smith et al., 2019a,b). However, these low-level predictions alone 
are non-diagnostic of an emotion category (i.e., people may attack in 
anger, fear, or other emotional states; Barrett, 2006; LeDoux, 2014) and 
insufficient for a neural basis of emotion representation. Discrete 
emotion representations are also abstract in that they model variation 
across diverse and heterogeneous sensory inputs (Barrett, 2006; Pereira 
et al., 2019). As such, a predictive processing view suggests that repre
sentations of discrete emotion categories like anger and fear may also 
rely on brain regions that are higher up in the hierarchy that are more 
capable of abstract information processing, such as heteromodal cortical 
areas of temporal and prefrontal cortex (Barrett, 2017; Satpute and 
Lindquist, 2019). 

For affective experience dimensions, current predictive processing 
models propose that activity underlying an affective experience may 
span throughout the neural hierarchy (Allen and Friston, 2018; Chanes 
and Barrett, 2016; Seth and Friston, 2016) depending on the distribution 
of predictions and ensuing prediction errors that occur when presented 
with evocative stimulus. Whereas simple feature detection models as
sume there is a specific and reliable activation pattern that underlies 
affective experience, perhaps localized to limbic and paralimbic struc
tures, predictive processing models assume that the neural basis of af
fective experience is contingent on the relationship between activity 
reflecting ongoing, hierarchically-organized predictions, and perturba
tions to this activity by an evocative stimulus. Since predictions are 
non-stationary (as discussed in Section 3.2) and since prediction errors 
are naturally contingent on predictions, neural activity underlying af
fective experience will depend on which aspects of an evocative stimulus 
are consistent with, or in violation of, ongoing predictions. As such, 
predictive processing models suggest there may be many different brain 
states that give rise to feelings of (dis)pleasure or arousal (or to a given 
emotion category such as fear; see Fig. 5). This many-to-one, brain 
states-to-behavior relationship has been variously referred to as de
generacy or multiple solutions in computational biology (Edelman and 
Gally, 2001; Marder and Taylor, 2011; Mason et al., 2015; Price and 
Friston, 2002). 

It has been proposed that degeneracy is a natural consequence of a 
predictive processing architecture (Sajid et al., 2020). Consistent with 
this idea, research by Mather and colleagues suggests that heightened 
arousal may involve different brain regions depending on the brain state 
prior to receiving an input: areas that are on a trajectory of activation are 
further amplified, and those that are not are reduced (Mather et al., 
2016; see also Shimaoka et al., 2018), which may be explained by a 
predictive processing account. For example, we (Ferreira-Santos, 2016) 
and others (Owens et al., 2018) proposed that this amplification could 
be modeled by the uncertainty of predictions (i.e., precision) in pre
dictive processing models. Similar ideas have been proposed in cognitive 
neuroscience. For example, theoretical models of attention have pro
posed that attention is not localized to a particular brain region or 
network but instead is accounted for by the uncertainties in predictions 
that are distributed throughout the brain (Lupyan and Clark, 2015). 
These uncertainties are non-stationary, and thus, may involve different 
brain regions in different moments. 

While degeneracy has not been formally tested in affective neuro
science, perhaps due to analytical challenges (see Khan et al., 2020), 

extant work is consistent with the idea that different neural pathways 
underlie affective experience in different situations. Coming back to the 
studies reviewed in Section 2, both the univariate and also multivariate 
studies reviewed suggest that brain regions supporting affective expe
rience depend on the stimulus induction modality. A meta-analytic 
summary showed that early sensory areas are reliably engaged during 
affect inductions involving the corresponding sensory modality (even 
when using neural stimuli with similar sensory properties), and no brain 
regions were consistently engaged across them (Satpute et al., 2015; also 
see, Royet et al., 2000; Sambuco et al., 2020; Woo et al., 2014; see 
Fig. 6). Studies using MVPA have shown that affect-predictive neural 
patterns are also situation dependent. Chikazoe et al. (2014) reported 
several brain regions that were valence-predictive for either visual or 
gustatory valence dimensions. Chang et al. (2015) found that brain re
gions predicting negative affect evoked by cutaneous stimulation (i.e., 
pain) were distinct from those evoked by graphic pictures. Notably, 
research in non-human animals, too, has shown that early sensory areas 
exhibit plasticity related to valence processing (Blake et al., 2006; David 
et al., 2012; Gavornik et al., 2009; Polley et al., 2006). 

One could retain the basic assumptions of the simple feature detec
tion model by modifying the model to propose that there are specific and 
reliable circuits for modality-dependent affect systems (Miskovic and 
Anderson, 2018). From this view, activity in early visual areas would 
arise during affective visual stimulus inductions, but not affective 
auditory inductions. Alternatively, a predictive processing account 
suggests that greater activity in these early areas may be driven by 
prediction error in relatively lower levels of the hierarchy. In the typical 
image-viewing task designs in affective neuroscience, low level pre
dictions may concern when and where to position the eyes, how much to 
dilate the pupils, and the expected changes in visual sensory information 
given these motor movements (a.k.a. “active inferences”, Adams et al., 
2013; Allen and Friston, 2018; Friston et al., 2009, as generated from 
eye-movements). Sensory predictions may also arise from prior experi
ence of previously processed stimuli in the study, which may also relate 
to overall frequency and familiarity of certain content in stimuli. From a 
predictive processing view, insofar as affect involves a multilevel 
cascade of predictions and prediction errors, it is quite possible that 
predictions are generated in sensory cortical areas that are not the same 
as those receiving direct inputs. For example, an evocative image of a 
child screaming may drive predictions in auditory cortex, and those 
predictions may play a constitutive role in affective experience. Indeed, 
there is evidence of cross-modal affective prediction: when auditory 
emotional prosody is incongruous with a preceding facial expression of 
emotion there is an increase in neural activity in the auditory cortex, 
which may be interpreted as prediction error (Garrido-Vásquez et al., 
2018). 

3.4. Summary 

Predictive processing models diverge sharply from simple feature 
detector models that have long guided study design in affective neuro
science. Rather than treating each trial in an experiment as an inde
pendent and identically distributed event, predictive processing models 
argue that experiments should account for the role of prediction and 
prediction error, temporal dependence, and the cortical hierarchy. 
Rethinking experimental design to concord with predictive processing 
models would require potentially radical shifts. Yet, in exchange, pre
dictive processing models offer affective neuroscience new approaches 
with which to understand how neural activity relates with dimensions of 
affective experience. 

4. Implications for inferring mental states in neurosciencetions 
for inferring mental states 

The implications that predictive processing models have for affective 
neuroscience extend to the foundational, theoretical assumptions that 
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underlie over a century of research in psychology and neuroscience. 
Predictive processing models suggest that psychological states are 
generated by degenerate patterns of neural activity. How then should 
researchers go about inferring mental states from neural activity (i.e., 
reverse inference; Poldrack, 2015, 2011, 2006). 

In the early days of fMRI, psychologists were excited by the prospect 
of using fMRI to decode mental states that occur during a task (Haynes 
and Rees, 2006; Poldrack et al., 2009). If fMRI could be used to reveal 
how a person feels about something using neural activity alone it would 
side-step thorny issues in using self-report measurements such as 
detrimental abilities to introspect on feelings (e.g., as in Autism spec
trum disorder; Frith and Happé, 1999) or biases reporting what a person 
thinks they should feel rather rather than what they do feel (e.g., from 
social desirability or demand characteristics). 

The initial enthusiasm was quickly dampened when it was pointed 
out that researchers were making a logical fallacy (Poldrack, 2015, 
2011, 2006). Functional neuroimaging studies are generally designed to 
make “forward inferences” by inferring the probability of activation in a 
brain region given a certain psychological state induced by a task. They 

are not well-suited to make “reverse inferences,” or inferring the prob
ability of a psychological state from brain activity. A study might 
manipulate unpleasantness using a task and make the forward inference 
that certain brain regions are engaged during negative affect (e.g., the 
amygdala). However, observing amygdala activity during another task 
does not mean that a participant is feeling unpleasantness during the 
task (i.e., the reverse inference). To make a reverse inference, a 
researcher must show that activation in a brain region, or a pattern of 
activation across brain tissue, is reliably and selectively associated with a 
specific psychological state. Individual experiments are unable to test 
selectivity because it requires examining neural activity during all 
possible psychological states, and showing that the pattern of activation 
only occurs during negative affect, for example, but not other states. 

One solution to the reverse inference problem is to estimate selec
tivity by using results from thousands of brain imaging studies (Yarkoni 
et al., 2011). Another solution is to forego strong claims of selectivity 
and instead to test for selectivity given the much smaller subset of 
psychological states or experimental conditions that are introduced in a 
study. MVPA studies reviewed in Section 2.2 have taken this latter 

Fig. 6. Brain regions engaged during affective experience depend on the stimulus content. 
The figure shows results from a meta-analysis of functional neuroimaging studies comparing evocative (positive and negative) v. neutral stimulus conditions (af
fective v. neutral faces, affective vs. neutral tastes, etc.; Satpute et al., 2015). Subcortical structures are presented on the right. Inconsistent with the idea there is a 
core set of brain regions supporting affective experience, there were no brain regions showing reliable activation during affective v. neutral conditions across all 
sensory modalities. For example, the amygdala were reliably engaged during visual stimuli, and also during auditory and olfactory stimuli (albeit with some 
lateralization), it was not reliably engaged during studies using gustatory and somatosensory affect inductions. The findings are consistent with degeneracy in 
functional neural organization: different neural pathways may support affective experience depending on the situation. 
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approach (albeit this limitation is rarely mentioned). Both solutions are 
based on the assumptions of a simple feature detection model; the 
analysis implies a search for the presence of a fixed neural activation 
pattern that is reliable and selective for a specific psychological state. As 
reviewed in Section 2, the evidence for that idea in affective neurosci
ence is mixed at best. 

Predictive processing models are incompatible with this formulation 
of the reverse inference problem. A psychological state may involve 
different brain regions in different moments (degeneracy) depending on 
how a stimulus perturbs (introduces prediction error) in the brain’s 
ongoing activity. Ongoing activity is itself non-stationary, and thus these 
perturbations and observed functional activities will vary across time (or 
trials). Further, the full set of predictions constitutes a person’s internal 
model and may be idiosyncratic to a person’s experience. For these 
reasons, it is unlikely that a fixed pattern of neural activity will be 
reliably and selectively associated with a certain psychological state. 

To make a forward or reverse inference while adopting a predictive 
processing model requires conditioning these inferences on the prior 
brain state. That is, a forward inference involves inferring the proba
bility of activation in a brain region given the previous brain state in 
addition to the psychological state induced by a stimulus. A reverse 
inference, then, involves inferring the probability of a specific psycho
logical state given the previous brain state as well as the present brain state 
(that is, the combination of the two reflects a perturbation in the 
ongoing activity of the brain). Likewise, reliability and selectivity are 
also conditioned on the previous brain state. Modeling the previous 
brain state will necessarily be much more complicated than most 
contemporary analytical approaches permit. However, if predictive 
processing models are the way forward in affective neuroscience, then 
this may be the critical step to achieve high levels of reliability and 
sensitivity in future work. 

5. Reevaluating internal and external validity 

Predictive processing models also suggest reconsidering the tradi
tional practice of emphasizing internal validity at the cost of external 
validity. This implication echos previous debates on this topic several 
decades ago (Brunswik, 1949, 1955; Dhami et al., 2004; Tolman and 
Brunswik, 1935). Traditional approaches in cognitive neuroscience have 
prioritized internal over external validity (as critiqued in Sha
may-Tsoory and Mendelsohn, 2019). Experimental paradigms often 
bear little resemblance to tasks conducted in everyday life. Using the 
typical affect induction task from Fig. 1 as our running example, par
ticipants are presented with a series of evocative images for a few sec
onds at a time. The images are often assumed to be unrelated to one 
other (independent), evoke affective feelings generically (i.e., imper
sonally), and are presented as isolated and temporally jittered events 
that disrupt the ordinary flow of information processing in space and 
time. Further, negative, positive, and neutral events occur in equal 
proportion, which violates the natural occurrence of evocative events in 
everyday life. For example, it has been reported that healthy affective 
functioning typically involves experiencing pleasant affect at a ratio of 
3–4 times as frequently as unpleasant affect (Schwartz, 1997; Schwartz 
et al., 2002). This base rate is commonly violated in affective neuro
science studies which tend to present equal numbers of positive and 
negative stimuli. 

From a traditional approach, these design choices are actually 
considered a strength not a weakness. They maximize internal validity 
under the assumptions of a simple feature detection model. If there does 
exists a neural circuit that responds reliably and selectively to negative 
valence, it makes sense to study it in isolation from the ostensibly con
founding influences of prior experiences (and thus, predictions) related 
to the semantic and perceptual content of the stimulus, timing, base 
rates, etc. The traditional view thus proceeds by first establishing causal 
relationships with high internal validity (assuming a simple feature 
detection model), and then attempting to translate the findings to more 

ecologically valid settings. In other words, they anchor on internal 
validity and then adjust for external validity. 

In contrast, a predictive processing approach suggests anchoring on 
external validity instead (for similar views see Hintzman, 2011; Nabel, 
2009; Shamay-Tsoory and Mendelsohn, 2019). Predictive processes 
from prior experience are not viewed as confounds, rather they are 
constitutive of psychological states. The brain develops a generative 
model of its neural activity in the context of the state of the body and 
current environment. In theory, even the prenatal brain is generating 
predictions, receiving sensory inputs (including from the internal 
milieu), processing prediction errors, and updating its predictions 
(Ciaunica et al., 91AD; Köster et al., 2020; Pereira et al., 2019). The 
accumulation of these predictions is an infant’s internal model which 
updates and adapts to the environment throughout the lifespan. The 
everyday contexts in which affective feelings and emotions occur 
contribute to the predictions that the brain generates and the basis from 
which there is prediction error. To understand the neural basis of affect 
and emotion then, it is important to first develop paradigms that anchor 
on external validity to capture the phenomena with integrity (i.e., par
adigms that utilize the internal model that a person has developed across 
the lifespan), and then introduce manipulations within that paradigm. 

It is interesting to consider how a predictive neural architecture 
would engage with a traditional experimental task in cognitive neuro
science. Arguably, the brain will learn to predict various idiosyncratic 
features of the artificial task environment (e.g., generating predictions 
pertaining to the stimulus contents, motor demands, and even the timing 
and uncertainty of timings in jitters). As a result, the laboratory context 
may lead to findings that might not otherwise be observed in daily life in 
the broader world. These findings may even be “reliable” given the 
boundaries of the task, but may not generalize to a similar study with 
different parameters for stimulus contents, timing, etc. Alternatively, by 
emphasizing external validity, researchers will start with an approxi
mation of functional organization for mental phenomena as they occur 
in everyday life. In turn, these insights may be more likely to generalize 
across contexts and lead to meaningful applications such as treatments 
for mood disorders. To be sure, emphasizing external validity does not 
mean abandoning internal validity. Instead, it means designing studies 
to be as externally valid for the phenomena in question as possible while 
still being able to establish causal conclusions. 

As an illustrative example in affective science of how researchers 
might prioritize external validity but also maintain sufficient internal 
validity to draw causal conclusions, we outline a study examining ma
nipulations of mood in everyday life (Kramer et al., 2014). Researchers 
examined the effects of positive and negative Newsfeed content on social 
behavior in Facebook users. They first modeled the base rates of positive 
and negative content for each individual. Then, they manipulated the 
amount of positive or negative content by 10 % relative to each par
ticipant’s unique base rates. This means that different participants 
received different numbers of positive and negative messages. Indeed, 
on average there was about twice as much positive content as negative 
content. Newsfeed content is tailored to each participant, which means 
different participants received different, idiographic semantic content in 
the Newsfeed (e.g., positive content may concern uplifting messages for 
one participant, cute animals for another participant). Although more 
traditional experimental psychology might view these differences might 
be viewed as flaws, predictive processing models would view them as 
strengths. This is because the stimulus situation clearly represents the 
domain of interest, ecological validity is high, and the researchers can 
still infer causality. 

Notwithstanding the unique challenges of a scanning environment, 
certain emerging paradigms are adopting more naturalistic stimulus 
situations that preserve the rich contextual details and spatiotemporal 
continuities of information processing of everyday life. For example, 
researchers have presented participants in fMRI studies with lengthy 
clips from movies (Baldassano et al., 2017; Chen et al., 2017; Hanke 
et al., 2014), music (Koelsch et al., 2005), and narrative story tellings 
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(Huth et al., 2016). These studies pose unique analytical challenges that 
are also being addressed with new analytical approaches (e.g., inter
subject functional connectivity; Chen et al., 2017), and creatively using 
analytical approaches to address hypotheses from predictive processing 
models (e.g., Richardson and Saxe, 2020). 

Ultimately, to assess the usefulness of the predictive processing 
approach in affective neuroscience, there is a need for studies that 
directly compare findings from studies using these paradigms (e.g., Kim 
et al., 2020) with those using more traditional paradigms using 
computational models that are consistent with a predictive processing 
account (Smith et al., 2021, 2019a; Spratling, 2019). Notably, prior 
work in general may benefit from testing for external validity even if 
taking a traditional approach. As illustrated in Fig. 2, prior MVPA work 
has implicated heterogeneous sets of brain regions as carrying infor
mation for classifying valence. External validity may provide a yardstick 
against which to separate which brain regions are ultimately of greatest 
relevance if one is inclined to assume a simple feature detection model of 
the mind and brain. 

6. Conclusion 

Wilhelm Wundt (1897) popularized the scientific usage of affect over 
a century ago. Since then, researchers have devoted significant effort to 
uncover its basis in the brain (Barrett and Bliss-Moreau, 2009; Baucom 
et al., 2012; Berridge, 2019; Bush et al., 2017; Colibazzi et al., 2010; 
Lewis et al., 2007; Mather et al., 2016; Miskovic and Anderson, 2018; 
Phan et al., 2002; Tye, 2018). Despite this effort, a neural signature of 
affect has proven to be elusive. This may be because prior work 
implicitly or explicitly assumes that the brain operates like a simple 
feature detector for affect. In contrast, there is increasing evidence that 
the brain tries to actively predict its inputs rather than passively await 
them (Doya et al., 2007; Hutchinson and Barrett, 2019; Rao and Ballard, 
1999). 

As outlined in this review, predictive processing models suggest new 
theoretical, experimental, and analytical directions in understanding the 
neural basis of affective experience (and other phenomena in cognitive 
neuroscience). In this review we have not focused on specific predictive 
processing models of affect (for work developing in this direction see, e. 
g., Allen and Friston, 2018; Barrett, 2017; Hesp et al., 2019; Hutchinson 
and Barrett, 2019; Smith et al., 2019) but rather on more general con
sequences of theories of predictive processing for the field of affective 
neuroscience. Specifically, we considered three major aspects of pre
dictive processing, the importance of the interplay between predictions 
and prediction errors, the temporal dependence of neural activity, and 
the hierarchical organization of neural structures. These aspects have 
significant inferential implications for affective neuroscience. In this 
regard, predictive processing seems to converge with other positions 
that are critical of traditional approaches (e.g., Shamay-Tsoory and 
Mendelsohn, 2019) but offers added value by providing a consilient yet 
parsimonious view of brain function. While there remains much to do in 
terms of developing new experimental paradigms and computational 
approaches that are informed by a predictive processing account, these 
advances may ultimately deliver a transformative new model for how 
the brain creates subjective feelings of pleasure, arousal, and emotion. 
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