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II. PROJECT DESCRIPTION 

A. Project Overview

This project investigates the development of improved automated explosives detection and classiϐication al-
gorithms through the fusion of multiple modalities. Of particular interest are techniques that can potentially 
penetrate luggage and complement the information provided by dual-energy X-ray imaging.  Our effort is fo-
cused on extracting additional signatures from X-ray excitation beyond the conventional density and effective 
atomic number by using X-ray diffraction.  
The research accomplished several goals:
• Explored the beneϐits and implications of alternative architectures for X-ray diffraction imaging, includ-

ing variation in source-detector conϐigurations, types of detectors, and changes in source content. 
• Developed and evaluated a suite of reconstruction algorithms for each architecture, and identiϐied pro-

cessing requirements as well as relative performance of the different algorithms in each architecture.
• Explored the need for fusion with dual energy CT reconstruction for different architectures to obtain 

reasonable performance.
• Explored new algorithm concepts based on compressive sensing to reduce computation and highlight 

structures in X-ray diffraction imaging.
• The majority of the results were documented in the Ph. D. thesis of Dr. Ke Chen [16] and the papers 

[16,17].

B. Biennial Review Results and Related Actions to Address

The majority of this project was completed by Year 2, and the project was expected to be terminated then.  
The effort in Year 3 was minimal; to educate a new graduate student to transition the methodology to other 
tasks.  Hence, this project was not reviewed, and no actions were needed to address any deϐiciencies.  

C. State of the Art and Technical Approach

X-ray Computed Tomography (CT) is a well-established modality for non-invasive medical diagnostic im-
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aging and security inspection. In conventional sin-
gle-energy transmission X-ray CT, an X-ray source 
with a given energy spectrum is used to radiate an 
object. The transmitted X-ray intensity through a 
straight-line path is measured at the detectors and 
used to construct estimates of the spatial distribu-
tion of the linear attenuation coefϐicient (LAC) of 
the material inside the object. In dual-energy sys-
tems, two different source spectra are used and 
the LAC is often represented in terms of two basis 
functions, corresponding to the Compton and pho-
toelectric effects. For material identiϐication pur-
poses, the coefϐicients of these two basis functions 
are often transformed into estimates of density 
and an effective atomic number.
X-ray diffraction imaging (XDI) is currently an emerging technology that synthesizes two important charac-
teristics of X-rays: their ability to form images and the ability to perform material analysis via representative 
X-ray diffraction proϐiles [8, 11, 12 and 18]. Originally developed as an analytical technique primarily used 
for the identiϐication of crystalline material samples, XDI has been developed over the years to become an 
alternative imaging modality for performing spectroscopic analysis of complex, extended objects. In contrast 
to conventional X-ray imaging systems, XDI measures low-angle coherent scatter and yields the spatially re-
solved coherent-scatter form factor, also termed diffraction proϐile, illustrated in Figure 1. Locations of peaks 
in the diffraction proϐile, known as the Bragg peaks, provide molecular structure information that can be 
used as spectral signatures. The high dimensional nature of these feature proϐiles makes them desirable for 
distinguishing and detecting the presence of speciϐic materials of interest.
XDI systems designed by Morpho Technologies have been incorporated into certiϐied luggage inspection sys-
tems [5, 9 and 10]. However, these systems require the use of tube collimators that restrict observed scatter 
to a ϐixed scatter angle, in order to localize scattering location. They also require the use of polychromatic 
X-ray sources and narrow band photon-counting detectors to measure the diffraction proϐile at each detec-
tor given scattering at a speciϐied angle. As a consequence, these systems have slow scan performance and 
low SNR for estimating the diffraction proϐile, as most of the scattered photons are at angles blocked by the 
collimators. 
Alternative approaches based on X-ray Diffraction Tomography (XDT) have been proposed [11-14], whereby 
each detector can collect coherent scatter at multiple angles.  These approaches combine X-ray CT and XDI 
techniques and, thus, use advanced reconstruction algorithms to localize the scattered radiation and esti-
mate coherent scatter form factors for different spatial locations. Early reconstruction algorithms for XDT 
[13 and 14] were mostly based on algebraic reconstruction technique (ART) with high computational cost 
and exploited a dense angular imaging architecture similar to CT.  A modiϐied three-dimensional (3D) ϐiltered 
back-projection (FBP) algorithm was developed in [15] that resulted with two orders of magnitude faster 
reconstruction speed compared to ART, although at a loss in reconstructed image quality and requiring dense 
spatial sampling. The algorithm also required monochromatic illumination; signiϐicant extensions would be 
required for using multi-energy illumination.
There has been extensive recent work at Duke University [18-24] on alternative X-ray diffraction architec-
tures that use both multi-energy illumination and energy sensitive detectors, exploiting the use of coded 
apertures and advanced computational imaging algorithms to reconstruct the coherent scatter form factors. 
Most of their experiments to date focused on imaging isolated materials and have not addressed many of the 
concerns that arise when imaging luggage, such as the presence of signiϐicant attenuation, beam hardening, 
and interference from neighboring objects.  

Figure 1:  Coherent scatter form factor for TNT.
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Motivated by these gaps in the available theory, we focused our efforts on studying tomographic imaging 
architectures for X-ray diffraction and corresponding computational inverse algorithms that were designed 
to work with multi-energy illumination for the imaging of densely packed volumes that include both metallic 
and non-metallic objects.  Since these architectures were notional, most of our experiments involve detailed 
Monte Carlo simulations of measurements provided by simulators such as GEANT4 [25] and are, thus, lim-
ited in scope due both to computational limitations as well as the difϐiculty in mathematical representation 
of the contents of suitcases. In our work [16 and 17], we developed novel tomographic inversion techniques 
that lead to enhanced image formation and material identiϐication, and improved upon the reconstruction 
algorithms provided by ART. By extension of our previous work on THz diffraction tomography, we studied 
alternative architectures for imaging densely packed diverse materials and identiϐied relative strengths and 
weaknesses for use in future luggage inspection systems. We discuss the foundations of X-ray diffraction and 
our technical approach below.
The interaction of X-ray photons with matter in an energy range between 20 and 150keV can be described 
by photoelectric absorption and scattering. Scattering encountered in radiology arises through coherent 
(Rayleigh, elastic) scattering and Compton (inelastic, incoherent) scattering. Whereas Compton scattering 
varies slowly with angle, coherent scatter occurs mostly in forward directions and its angular spread has 
a distinct structure, characteristic of the type of material. Coherent scatter is often measured in terms of a 
scattering form factor |F(q)|2, where q is the momentum transfer and the form factor is proportional to the 
scattering cross-section of the material.  The momentum transfer parameter q depends on the excitation 
wavelength λ and the deviation angle Θ from the straight path, as:      

Hence, there are different ways to vary and mea-
sure momentum transfer. For example, knowing the 
X-ray excitation energy, and observing the scattered 
photons at different angles will vary q. Alternatively, 
knowing the angle of observation varying the exci-
tation energy (thus wavelength), will vary q. The lat-
ter approach is used in current commercial scanners 
[9 and 10], where the deviation of broad spectrum 
X-rays are measured at a single ϐixed deϐlection angle, 
as constrained by tube collimators, and photon-counting detectors can measure the relative photon counts 
for the different energy levels, corresponding to different momentum transfer levels.  Such an architecture 
is illustrated in Figure 2 and has the advantage that the material in question is interrogated from a single 
direction, rather than requiring multiple directions. In addition, each detector is focused on a unique voxel, 
making the association between the measured scattering form factor and the physical location straightfor-
ward.  However, the main limitation of the architecture is that most of the scattered photons fail to reach the 
detectors and, hence, it takes signiϐicant time to acquire sufϐicient signal strength to discriminate materials 
reliably.
In our work, we focused on two alternative architectures that show promise for increasing signal strength 
by collecting scattered photons from multiple locations at each detector. This implies that the localization of 
scattered photons must be done computationally through the solution of an inverse problem. The ϐirst ar-
chitecture is an XDT architecture similar to that proposed in [12] and shown in Figure 3. In this architecture, 
a given plane in an object is illuminated and off-plane detectors collect scattered information from multiple 
locations in the plane. The illumination source rotates around the object, along with the detectors, providing 
multiple views of the object. In order to isolate the number of locations that contribute to scatter in each 

Figure 2:  X-ray diff raction imaging system.
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off-plane detector, vertical collimators are used to restrict 
the locations that contribute scattered photons to a detector 
to those locations in a beam aligned with the projection of 
the detector on the illuminated plane. In such an architec-
ture, the source and detectors would rotate as in current CT 
systems. Alternative versions of this architecture that would 
not rotate detectors include electron-beam tomography, but 
the source would be excited from different locations.  While 
our analysis focused on the rotating architecture, the results 
would be similar when using architectures such as elec-
tron-beam tomography.  
The second class of architectures we studied were coded 
aperture architectures, where the object of interest is not 
required to rotate between the source and detectors.  This 
architecture is similar to that proposed in [19 and 20] and 
uses a coded aperture mask between the object of interest 
and the detectors, as illustrated in Figure 4. This architec-
ture differs from the ϐirst architecture in several ways. First, it uses three ϐixed projections, as opposed to a 
rotating set of projections. Second, the system allows for the mixing of scatter signals from multiple beams in 
the plane, thereby collecting more of the scattered photons at the detectors. 
The three directions of illumination are cho-
sen to be 60 degrees in orientation to provide 
illumination diversity. Each direction illu-
minates a plane in the object and allows the 
scattered photons to scatter off-plane to a set 
of scatter detectors. Unlike the approach in 
Figure 3, no collimators are used between col-
umns of detectors; instead, scattered photons 
from the entire plane pass through a coded 
aperture that blocks some scatter directions 
on the way to detectors. Figure 4 illustrates 
one direction of illumination, where a plane of 
X-ray excitation at wavelength λ illuminates the object under investigation. Coherent scatter radiation from 
the illuminated plane passes through a coded aperture before reaching a 2D detector array. 
We developed mathematical models of the above XDI systems and used them as the basis for developing 
tomographic reconstruction algorithms for X-ray diffraction images. The details of these algorithms are doc-
umented in our paper [18] and the thesis [1]. We provide a brief overview of the formulation and techniques 
below.
Consider the illumination geometry illustrated in Figure 4 without the code aperture.  The object is being il-
luminated at a projection angle Φ by source G units away from the detector array. The intensity at wavelength 
λ at (t, s, 0) is given by

where A(t,s,0) is the exponential expression describing the attenuation along with the incoming radiation 
that reaches the object at voxel (t,s,0). The intensity of coherent scattering from a voxel centered at (t,s,0) 

  Figure 3:  Tomographic X-ray diff raction.

Figure 4: X-ray diff raction imaging.

ALERT  
Phase 2 Year 3 Annual Report

Appendix A: Project Reports 
Thrust R4: Video Analytics & Signature Analysis 

Project R4-C.2



towards the detector element at position (t, D, h), where h is the off-plane height of the detector, can be 
modeled as

except a constant factor describing the proportionality. The form factor of interest that we are trying to re-
construct is F(t,s,q) at each voxel position (t,s) for each momentum transfer level q. The last approximation 
assumes small scatter angles that are typical of coherent scatter.
In our rotating XDT systems, detector columns are separated by sheet collimators whose blades are angled 
towards the source. This guarantees that detector element at (t, D, h) only collects photons from scattering 
along the same t, mixed from different s positions. Let B(t, s, h) be the wavelength-dependent attenuation 
from the coherent scatter at (t, s, 0) to the detector element at (t, D, h); the intensity received at this detector 
element is given by

For intensity detectors with cutoff frequencies (λmin, λmax) and area A at off-plane height h from the illumina-
tion plane, the effective area exposed to radiation is 

and the overall intensity detected at (t, D, h) is the integration over the voxels along path at t inside the object, 
averaged over the intensity distribution over frequency, as

The above equation represents the basic mathematical model relating the observed measurements, high-
lighting a key issue: to model the measurements, one requires knowledge of the frequency dependent atten-
uation (A, B in the equation above) along the transmitted and scattered paths. That may require information 
collected from dual-energy or multi-energy transmission imaging.
The above measurement model was derived for energy detectors.  If photon-counting detectors are used with 
frequency bins of half width ∆ centered at frequencies λk, the observation model yields an energy in each bin, 
as

The above measurement model is based on restricting the scatter to a vertical off-plane direction. In our cod-
ed aperture architectures, we allow more general scatter directions, so this model gets modiϐied to include 
effective cross-area for off-line detectors, as

and the new measurement models depend on the side offset t’ as well as the height h, given by
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To construct the images from X-ray diffraction measurements in both systems above, we used computational 
imaging approaches that exploited the sparse measurement structure. The detailed approaches were doc-
umented in the thesis [26]. We pose the XDI reconstruction problem as an inverse problem, reconstructing 
objects slice by slice, estimating for each illuminated object slice a 3-dimensional intensity distribution b (in 
x, y and q) from its observations y. Here, the imaged ϐield of view is discretized into N spatial x, y voxels, and 
at each voxel the ϐield has an M-dimensional value, where M is the number of momentum transfer levels. Dis-
cretizing the measurement models discussed previously yields a model expressed as

where the variable n represents model errors. Below, we highlight two algorithmic approaches for construct-
ing the images; the details of these and other approaches were documented in [26].  
The ϐirst approach is based on using total variation regularization on the image derivatives. We used this 
regularization on the spatial coordinates but not on the momentum transfer coordinate because we expected 
to image objects with spatial extent, however, the coherent scatter form factors had different structure.  Our 
algorithm IRL1 obtains the reconstruction by solving the optimization problem:

where Wy is a data-dependent diagonal matrix used to represent the Poisson nature of the measurements.   
We solve this nondifferentiable convex optimization problem using standard approaches such as half-qua-
dratic approximations.
The second algorithm is based on edge-preserving regularization, explicitly attempting to estimate boundar-
ies between spatial objects in an approach that generalizes the well-studied Mumford-Shah functional for im-
age segmentation. Using the Ambrosio-Tortorelli relaxation, for each spatial voxel (x,y), we estimate a bound-
ary ϐield s(x,y) that can be interpreted as the probability that this voxel is an object boundary. Our algorithm 
IREP solves for the reconstructed image and the boundary ϐield in an integrated optimization approach, with 
objective based on our previous work [1-4], as 

where Ws is a diagonal weight matrix that avoids regularization near edges, as

To evaluate the performance of our algorithms, we used a couple of simple test phantoms that could be sim-
ulated for each of our architectures. One of these phantoms is a 3-dimensional block composed of a mixture 
of crystalline and amorphous materials: PVC, PMMA, Graphite, and Aluminum. The phantom is homogeneous 
in the vertical dimension; since coherent scatter is measured off the plane of illumination, the vertical dimen-
sion affects the coherent scatter through absorption of the scattered radiation, with signiϐicant reduction in 
signal strength. This phantom is illustrated in Figure 5 (on the next page) along with the momentum transfer 
form factors and the linear attenuation coefϐicients for each material. This phantom has materials with both 
concentrated form factors with sharp peaks (graphite, aluminum) as well as diffuse form factors (PMMA, 
PVC). It also has signiϐicant metal content with a high linear attenuation coefϐicient, which can lead to the 
creation of artifacts. Our main reasons for exploring this phantom was to determine the types of artifacts that 
result in the architectures for X-ray diffraction imaging and to identify algorithms that can mitigate those 
artifacts.
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One of the main results of our analysis was to evaluate whether one needed accurate information regarding 
the energy-dependent linear attenuation coefϐicients of the object of interest, which would have to be ob-
tained from other modalities such as dual-energy imaging.  Our measurement model above requires such 
knowledge to compensate for photon losses along the incoming and scattered path. Without this information, 
one must make approximations regarding these losses as part of the reconstruction algorithms.  One possible 
approach to avoid this is based on our extensions of an approximation suggested in [15], as follows. The idea 
is to obtain a measurement of energy received along the transmission path and deϐine new measurements 
based on the ratio of the scattered measurement energy to the transmitted measurement energy. For photons 
with energy level , the attenuation along the scattering path can be approximated by the attenuation along 
the transmitted path as:

Then, we deϐine the ratio measurement for the tomographic architecture with vertical collimation as

Note that, with the approximation, the normalization yields a model that no longer requires knowledge of 
the attenuation. However, this model requires monochromatic illumination as well as the approximation of 
the attenuation. If the X-ray source had a spectrum, even if measured using photon-counting detectors, the 
ratio would be:

and the last simpliϐication requires that straight path attenuation and intensity are approximately constant 
in the frequency range of interest. 
To evaluate whether this approximation is sufϐicient, we performed reconstructions using both accurate lin-
ear attenuation coefϐicients as well as the approximations developed when one did not have this side infor-
mation, using multi-energy excitation from 60 to 72 keV and photon counting detectors with 4 keV resolu-
tion, along with the X-ray diffraction architecture of Figure 3.  The results are summarized in Figure 6 using 
the IRL algorithm. The IREP algorithm gives similar results. The results highlight that, for this architecture, 
the use of the approximate model provides reconstructions that are only slightly degraded relative to the 
reconstructions obtained using the side information when photon counting detectors are used, even with a 
coarse energy resolution. This suggests that the architecture of Figure 3 can form images without fusion from 
dual-energy CT when using photon-counting detectors. Other results we obtained indicate that this is not 
true when only using energy detectors and can be found in [17 and 26]. 

Figure 5: Left: Experiment phantom; Middle: momentum transfer form factors; and Right: linear attenuation coeffi  -

cients for each material in the phantom.

ALERT  
Phase 2 Year 3 Annual Report

Appendix A: Project Reports 
Thrust R4: Video Analytics & Signature Analysis 

Project R4-C.2



We performed a similar analysis using the coded aperture architecture of Figure 4 with 3 illumination direc-
tions. To simplify the reconstruction, we used monochromatic illumination. The results are shown in Figure 
7 (on the next page). Note that the peak corresponding to graphite at 1.3 nm-1 has been smeared over a 
larger area, and the peak corresponding to aluminum at 2.14 nm-1 has been eliminated. There are also issues 
with respect to the form factors for the amorphous materials. The results imply that, for this coded aperture 
architecture, it is essential to use fusion information regarding linear attenuation coefϐicients in order to 
compensate for photon path loss in the reconstruction algorithms. This can be explained in part because the 
coherent scatter reaching any one detector comes from many different rays, so the approximation using the 
transmission attenuation is much less accurate than when you restrict scatter to a vertical direction along an 
incoming ray, which was homogeneous given the vertical symmetry of our phantom object.  

Figure 6: Images of coherent scatter form factors at 0.86, 1.30, 1.66 and 2.14 nm-1 using the tomographic imaging ar-

chitecture of Figure 3.  
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We also conducted experiments to illustrate the performances of the different algorithms. Using the coded 
aperture architecture with three different illumination directions and photon-counting detectors with 4 keV 
resolution, we compare the reconstructions obtained by algorithms IRL1, IREP and a variation called IREP-C 
documented in [25], that uses object boundaries obtained from CT images.  The results, shown in Figure 8 
(on the next page), indicates that the crystalline regions are reconstructed homogeneously and clearly by the 
different algorithms. In particular, the IREP algorithms localize the geographic extent of the crystalline re-
gions well, with sharp, accurate boundaries. However, there is reconstruction of the amorphous materials, as 
energy from the peaks of the crystalline materials appears at other momentum transfer levels.  Note also that 
the IREP and IRL1 algorithms have difϐiculty segmenting the aluminum block due to signiϐicant self-attenua-
tion of the scattered photons in the aluminum block, whereas the IREP-C algorithm has much more accurate 
reconstruction in that area.
We also developed a new class of algorithms for reconstruction of X-ray diffraction images based on image 
dictionaries. Our goal was to improve reconstruction of the amorphous form factors, which were difϐicult to 
reconstruct in our previous approaches, as indicated by our results in Figures 6-7, and Figure 8 (on the next 
page). Dictionary-based processing is a recent tool used in image processing for a variety of problems, from 
denoising to inpainting. In our prior work [16 and 26], we had shown that using known form factors for 
speciϐic materials as dictionary elements for reconstruction yielded improved accuracy for non-crystalline 
coherent scatter form factors. However, the set of all possible compounds would yield too large a dictionary 
for such techniques to be practical.  

Figure 7: Images of coherent scatter form factors at 0.86, 1.30, 1.66 and 2.14 nm-1 using the coded aperture imaging 

architecture of Figure 4.
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Instead, we designed an overcomplete dictionary of 
splines tailored to exploit the coherent scatter form 
factor structure across the momentum transfer di-
rection with sharp peaks for crystalline materials 
and smooth variations.  The basis functions for this 
dictionary are shown in Figure 9. We then designed 
an inverse image formation algorithm that extend-
ed our IRL1 algorithm to represent the resulting 
q-images at each location as a sparse sum of mul-
tiples of dictionary elements, exploiting principles 
of compressive representations by including an l1 
penalty on non-zero coefϐicients in the objective 
function. Thus, the objective function included a 
spatial smoothness objective to represent object 
regions, and a sparse form factor representation to 
encourage the use of a small number of basis func-
tions to represent the underlying coherent form 
factors.  We refer to this new algorithm as IRWS.  

Figure 8: Images of coherent scatter form factors at 0.86, 1.30, 1.66 and 2.14 nm-1 obtained for diff erent reconstruction 

algorithms using the coded aperture imaging architecture of Figure 4. 

Figure 9: Dictionary of spline functions for fi tting sharp 

peaks and smooth form factors. 
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The performance for the IRWS reconstructions is shown in Figure 10 for data collected using the coded ap-
erture architecture of Figure 4. The results show improved reconstruction of the areas where non-crystalline 
materials are present, supporting our conjecture that dictionary representations would be useful. Our ϐinal 
investigation in this project expanded on the idea of dictionary representations. In the past decade, several 
groups [27 and 28] have proposed techniques for learning dictionary elements and adapting them based on 
the speciϐic image being processed. These techniques have been used primarily for image enhancement and 
restoration, not for inverse problems. In the context of image enhancement, the techniques have shown im-
proved design of basis functions that lead to sparse representations and improved image quality. We extend-
ed techniques such as K-SVD [27] to apply to dictionary learning for X-ray diffraction imaging. We found there 
is one signiϐicant difference in the tomography problem from the image restoration problem: the observation 
operator is non-local, which makes learning a dictionary for local patches difϐicult. In our implementation, we 
used the IRL1 algorithm to construct an initial X-ray diffraction image, which we used to learn an overcom-
plete dictionary basis. We found that the quality of reconstruction obtained from the initial IRL1 image was 
insufϐicient to identify good dictionary elements in this problem. Given the complexity of this problem, we 
thought it would be best to focus the use of adaptive dictionary learning on simpler problems such as artifact 
mitigation in conventional CT. 

Our results established the feasibility of new classes of X-ray diffraction imaging architectures based on to-
mographic principles with sparse observation geometries that increase the amount of observed scattered ra-
diation versus current approaches, and which can generate X-ray diffraction images in a timely manner.  Our 
results also identiϐied the need for including energy-sensitive detectors as well as the integration of infor-
mation from dual-energy CT systems in order to properly reconstruct the diffraction images using advanced 
computational imaging techniques. Our investigations also established the presence of potential new classes 
of artifacts that result from inclusion of metallic materials with high linear attenuation along with softer ma-
terials such as liquids, plastics, and organic materials. These artifacts include spectral contamination where 
crystalline peaks in the form factors from one material appears in nearby materials, to obscuration due to 
attenuation of the scattered spectra and increased noise due to lack of collimation to reduce incoherent scat-
ter. These pose signiϐicant challenges that must be addressed through the use of advanced algorithms such as 
the ones developed in this work. 
There are several directions in which this work could be extended, including further experimentation with 
different materials, development of faster reconstruction algorithms, and evaluating different architectures.  
However, there is much work in industry that is currently considering the development of new architectures 
for XDI. The extensions of this work need to wait for further architecture deϐinition by the DHS vendor com-
munity so as to be relevant for the emerging new devices. Our current results are sufϐicient to provide sup-
port in these architecture design endeavors.   

Figure 10: Images of coherent scatter form factors at 0.86, 1.30, 1.66 and 2.14 nm-1 obtained for IRWS algorithm using 

the coded aperture imaging architecture of Figure 4.
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D. Major Contributions

The above outcomes were accomplished by Year 2:
• Provided a systematic analysis of alternative X-ray diffraction architectures and established performance 

limitations as well as requirements for fusion with dual-energy CT.
• Developed advanced algorithms for tomographic reconstruction of X-ray diffraction images and charac-

terized their relative performance.
• Developed results that establish the feasibility of tomographic X-ray diffraction architectures that have 

greater efϐiciency in collecting coherent scatter signals when compared with current commercial models. 
• Developed extensions to advanced image processing techniques such as dictionary-based image en-

hancement to apply to X-ray diffraction imaging and evaluated the performance of these extensions.
In Year 3, the only outcome was:
• Transfer of algorithm software and data sets for exploration in multi-energy CT reconstruction and in 

analysis of performance for alternative checked luggage imaging systems. 

E. Milestones 

The only milestone in Year 3 Work Plan was:
• Transfer of algorithm software and data sets for exploration in multi-energy CT reconstruction and in 

analysis of performance for alternative checked luggage imaging systems. 
This milestone was achieved in Year 3. 

F. Future Plans

As indicated, this project has achieved its milestones and will not continue as part of the ALERT research 
portfolio. The student involved in the project will be focusing on a new direction involving adaptive recon-
struction for artifact mitigation in CT imagery motivated by check point and checked luggage dual-energy CT, 
which is ALERT project R4-C.1.  We will transition the work in this project to support our effort under DHS 
BAA 13-05 that includes analysis of multi-modal object recognition with new signatures such as X-ray form 
factors of materials.  

III. RELEVANCE AND TRANSITION

A. Relevance of Research to the DHS Enterprise

This project is developing technologies for improving automated detection and classiϐication of explosive 
materials in checked luggage by imaging additional properties of materials that can provide improved dis-
criminants. Of particular interest is the potential for improving detection of complex explosives such as liq-
uids and homemade explosives (HMEs) using these advanced discriminants.  

B. Potential for Transition

Prototype X-ray diffraction systems are currently under investigation or development by many companies, 
including Morpho, Analogic, L-3, Reveal and others.  We have presented our results to each of these groups to 
integrate into their design considerations.  
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C. Data and/or IP Acquisition Strategy

We have no plans to acquire further data at this point. There are no systems currently built that work on to-
mographic principles, so data has to be simulated.  In terms of IP, all of our results are available in the public 
domain.

D. Transition Pathway 

We have presented our investigations and discussed the results with several potential end users. They will 
integrate the lessons learned into their development process. If there is opportunity for speciϐic algorithm 
technology that is well-suited for their use, we will assist in transitioning that technology and tailoring it for 
their speciϐic system design. 

E. Customer Connections

• David Lieblich, Analogic (infrequent seminar and discussions) – interested in results, but not involved in 
project.

• Boris Oreper and David Perticone, L-3 Communications (infrequent seminar, discussions) – interested in 
results, but not involved in project.

• Robert Shuchatowitz, Reveal Imaging (infrequent seminar, discussions) – interested in results, but not 
involved in project.

• Sondre Skatter and Matthew Merzbacher, Morpho Detection – (technical discussions) – interested in re-
sults, but not involved in project. 
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