
R4-C.1: Advanced Multispectral Computed 
Tomography Algorithms 
I. PARTICIPANTS INVOLVED FROM JULY 1, 2019 TO JUNE 30, 2020

Faculty/Staff  
Name Title Institution Email 

Clem Karl  PI BU wckarl@bu.edu 
David Castañón Professor BU dac@bu.edu 

Graduate, Undergraduate and REU Students 
Name Degree Pursued Institution Month/Year of Graduation 

Sandamali Devadithya PhD, ECE BU 6/2021 
Usman Ghani PhD, ECE BU 6/2021 

II. PROJECT DESCRIPTION

A. Project Overview

Explosives represent a continual threat to aviation security. New threats, resilient and adaptable adversaries, 
and demands for increased throughput continue to stress existing and planned security systems. New limited 
data geometries, novel sensing paradigms, and increased performance requirements have challenged 
traditional methods for Computerized Tomography (CT)-based explosives detection in security systems. 
Furthermore, CT-based systems are being developed and deployed for new missions, such as checkpoint 
carry-on screening and air cargo screening. Such systems use new sensing geometries with multi-spectral 
excitation. 

In order to extract features that can identify explosives, CT systems are using dual-energy computed 
tomography (DECT) to estimate a small number of material-specific parameters at each image location and 
use them for material identification. Multispectral X-ray CT attempts to use the additional energy-dependent 
material information obtained by making multiple energy-selective measurements of attenuation. Metal and 
clutter in scenes cause artifacts that confound traditional methods. In addition, new sensing geometries are 
being explored. All these developments have meant that the application of conventional tomographic 
imaging approaches, largely coming from the medical domain, are highly suboptimal, and new approaches 
are required.  

In this project, new methods for the formation of enhanced material parameter images from multi-energy 
CT data have been developed. The methods focus on increasing robustness to noise and artifacts that exist 
in images obtained by conventional means. The resulting algorithms include approaches for enhanced image 
quality and material identification. The improved algorithms lead to more accurate material and object 
identification, resulting in fewer false alarms, greater security, and reduced passenger inconvenience. These 
algorithms have been tested on simulated and real data.  
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B. State of the Art and Technical Approach

The majority of the work on multispectral X-ray CT focuses on DECT. Several DECT techniques have been 
suggested since the 1970s [1-3]. They are mostly targeted at medical applications and do not deal with the 
image artifact mitigation necessary for security applications [4-8]. Extensions of dual-energy techniques for 
security applications can be found in [8-9]. We overview the basic approach for DECT briefly below. 

In DECT, X-ray transmission measurements of an image are collected using two excitations with different 
spectra. The observed normalized log-sinogram data in DECT sensing follows the nonlinear Beer-Lambert 
law [1,2,9]: 

where 𝑤𝑤𝑠𝑠(𝐸𝐸) is the spectral weighting used in the measurement with spectrum s; 𝜇𝜇(𝑥𝑥,𝐸𝐸) is the linear 
attenuation coefficient (LAC) of the material at spatial location x and energy E, and 𝐼𝐼𝑠𝑠(ℓ) is the measurement 
along ray-path ℓ for spectral weighting 𝑤𝑤𝑠𝑠(𝐸𝐸). Examples of LAC curves and spectral weighting functions are 
shown in Figure 1. 

Figure 1: (left) The LAC curves of a few example materials and (right) examples of spectral weighting functions 
(normalized to unit sum). 

The characteristics of the material at spatial location x are captured through the energy dependent function. 
Typically, this function is approximated as a linear combination of a few basis functions [1, 8]. A common 
choice of basis functions in DECT are the photoelectric absorption and Compton scatter cross-section 
functions. The LAC representation in the photo-Compton model is given by: 

𝜇𝜇(𝑥𝑥,𝐸𝐸) = 𝑎𝑎𝑝𝑝(𝑥𝑥)𝑓𝑓𝑝𝑝(𝐸𝐸) + 𝑎𝑎𝑐𝑐(𝑥𝑥)𝑓𝑓𝑐𝑐(𝐸𝐸) 

where fp(E), fc(E) are the photoelectric and Compton energy-dependent basis functions; and ap(x), ac(x), are 
the corresponding material-dependent coefficients at each spatial location x. The goal is to separate materials 
on the basis of their coefficient values.  

In many DECT methods, the goal is to reconstruct the coefficient images ap(x) and ac(x), given the dual-energy 
tomographic projection measurements I1(ℓ), I2(ℓ). Since the problem is nonlinear and high dimensional, a 
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well-known solution approach is to separate it into two decoupled subproblems [1]. In the first subproblem, 
a nonlinear set of equations is solved at each detector, to obtain the basis coefficient sinograms Ap(ℓ), Ac(ℓ), 
defined as: 

The second subproblem is tomographic reconstruction of the basis coefficient images ap(x) and ac(x) from 
these sinograms. This reconstruction step is usually accomplished by applying filtered back projection (FBP) 
or iterative reconstruction methods to each sinogram individually; therefore, mutual structure information 
is not used. 

An early focus of this work was on developing reconstruction algorithms that simultaneously formed basis 
coefficient images and exploited mutual structure information in each sinogram. We called this method 
structure-preserving dual-energy (SPDE), which was documented in our past publications [10-12].  

The general formulation of our SPDE method in vector form is given by the following: 

where s is a common mutual boundary field; T is the tomographic projection operator; D is a derivative 
operator; Wz is a data weighting matrix; Wps and Wcs are weighting matrices derived from s; and λk are 
nonnegative regularization parameters.  

Another major result in our previous work was the development of a joint segmentation/recognition 
approach for direct estimation of material labels from dual-energy labels. In typical explosive detection 
systems [10-12], segmentation of reconstructed images is used to identify volumes of interest, from which 
features are extracted to classify the volume. In our approach, we formulate a combined 
segmentation/classification optimization problem for dual-energy systems. We extended the previous multi-
energy formulation to direct estimation of material labels but combined a dual-energy learned appearance 
model with a Markov random field material model. In the dual-energy case this formulation becomes:  

where µjL, µjH are the formed effective attenuation images obtained from measurements with two different 
(high and low) spectral weightings at voxel x; lx is the material label at voxel x; p(µjL,µjH | lx) is the learned 
appearance model for material label lx at voxel 𝑥𝑥; 𝑣𝑣𝑥𝑥  are data weights, which down-weight data points in the 
vicinity of metal; λ is a nonnegative regularization parameter; and gMRF(l1, l2, …, lN, s) is a Markov random field 
smoothing term, which is based on an estimate of the image boundary field s. This MRF model captures local 
coherence of material labels and takes into account an estimate of object boundaries to further ensure label 
homogeneity within an object.  

The resulting optimization problem is a nonconvex, discrete label problem, which is generally challenging to 
solve. To accomplish this optimization, we developed an efficient graph-cut method. Such graph-cut methods 
[13] have been popular in computer vision and discrete optimization literature but have not been used in
this domain. These methods map the original optimization problem to an equivalent graph flow problem,
and a minimal cut of this graph provides the optimal solution when there are only two labels. In our
experiments, there are multiple labels, so we use a rotation method to obtain a solution. We call this voxel-
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based method “learning-based object identification and segmentation,” or LOIS. Our algorithm development 
and initial results were documented in [10-,11].  

In our recent work, we extended this approach to learn spatially correlated models of the dual-energy 
reconstructions for different materials. Using sample reconstructions that include regions with known 
materials, we learn the conditional probability density of the low and high attenuation images over a 
neighborhood patch that includes k pixels, as: 

where µj,nL, µj,nH refers to the reconstructed low and high attenuation for pixel number k in patch at location n. 

In our work, we use patches consisting of 2×2 pixels to better capture the special energy dependence. We 
then optimize the following energy function over the labels and patches: 

where NN is the number of patches; ℓn is the label of patch n; and 𝜙𝜙�ℓ𝑛𝑛,ℓ𝑗𝑗� is 0 if ℓ𝑛𝑛 = ℓ𝑗𝑗, 1 otherwise. The 
resulting discrete optimization problem is solved by a multi-label graph-cut algorithm [22], leading to fast 
assignment of material labels to patches. The development of the patch-based version of the LOIS algorithm 
was presented in our paper [14] and the thesis [15].  

The LOIS approach described above for the joint segmentation/classification of materials requires the 
formation of CT images. As part of our research under this task, we have also developed approaches that can 
directly estimate discrete labels associated with spatial regions from single-energy or dual-energy sinograms. 
This bypasses conventional CT image formation and results in discrete tomography formulations. In our work, 
we examined the difficult general problem of inverting tomographic data where the scene is constrained to 
be discrete valued using a variational approach. Our original problem is defined as: 

where 𝑥𝑥 is the desired, unknown, discrete-valued quantity of interest; 𝐽𝐽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) is a data penalty (e.g., negative 
log-likelihood) that projects how the label field would generate sinograms that match the observed data; and 
‖D𝑥𝑥‖11 is a total-variation edge-preserving dissimilarity penalty on the reconstructed label field.  

The above formulation is a combinatorial formulation: each voxel must be labeled with one of a finite number 
of material labels (which includes background). As such, this is no longer a convex optimization problem of 
the type solved by iterative CT algorithms. Furthermore, the data fidelity term now involves matching the 
sinogram data, rather than matching the learned appearance model in the image space. The tomographic 
relationship between sinograms and the underlying properties of the label images does not permit the direct 
application of fast combinatorial algorithms, such as graph cuts, to solve the discrete problem.  

Our early work on discrete tomography is documented in [16-17]. Our approach in that work was focused 
on extensions of graph-cut algorithms that would be applicable to discrete tomography, either through 
sequential linearization or through the use of decomposition techniques. We ended up pursuing a different 
algorithmic approach, developing a new variable splitting approach based on the alternating direction 
method of multipliers (ADMM) from convex optimization theory. ADMM is designed to solve convex 
optimization problems involving two blocks of variables by splitting the overall hard optimization into a 
sequence of simpler optimizations [18]. The ADMM algorithm is used for convex optimization with 
continuous variables, and our discrete optimization framework is notably nonconvex. 
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The ADMM-based algorithm that we developed, which we term TOMO-SPL, provides an efficient, inherently 
discrete solution; however, using a particular variable splitting: 

Specifically, we reconstruct a continuous approximation to the discrete label field in the form of x, and we 
then solve for the best label z to assign to that discrete field that is close to x. Our particular splitting thus 
breaks down (in a joint iterative optimization) a field reconstruction step similar to CT iterative 
reconstruction, together with a joint segmentation/label step; the former step is done using standard 
iterative CT techniques, whereas the latter step can be performed efficiently using graph-cut techniques. This 
work was documented in our papers [19-21]. 

Another result from Year 4 that integrates learning into reconstruction is the development of a new 
algorithm to reduce metal artifacts in CT images when data is acquired using a single source spectrum. This 
is a major problem in both medical and security CT [4-5, 7]. Such metal artifacts arise from many effects, 
including beam hardening. With a single energy spectrum, one cannot use basis decomposition techniques 
to correct these artifacts.  

Our algorithm is a hybrid approach that corrects the sinogram vector followed by an iterative reconstruction. 
Many prior sinogram correction algorithms [22–24] identify projection measurements that travel through 
areas with significant metal content and remove those projections, interpolating their values for use in 
subsequent reconstruction. In contrast, our algorithm retains the information of random subsets of these 
metal-affected projection measurements, and uses an average procedure to construct a modified sinogram. 
To reduce the secondary artifacts created by this interpolation, we apply an iterative reconstruction in which 
the solution is regularized using a sparsifying transform [25]. The basis functions used in the sparsifying 
transform are learned from reconstructed imagery, enforcing the natural structure that appears in CT 
reconstructions. Our experiments indicate that our algorithm reduces the extent of metal artifacts 
significantly, and it enables accurate recovery of structures in proximity to metal. These results are 
documented in our publication [26].  

In the above discussion, we primarily focused on dual-energy CT systems. The emergence of new threat 
materials and variations in manufacturing processes have introduced new challenges for separating 
materials of interest using dual-energy spectra. There has also been an increase in new measurement 
technologies for extracting additional signatures that would enhance the capability for identifying materials, 
including commercial photon-counting detectors to facilitate multi-spectral CT and new measurement 
technologies (e.g., X-ray diffraction imaging and phase contrast imaging). Furthermore, new features are 
being proposed for dual-energy systems, either in terms of basis materials or in terms of electron density or 
effective atomic number [1,8,27].  

Given these developments, it is important to understand the limits in performance of potential designs for 
new systems that include changes in architecture, processing, measurement technology, and extracted 
features. To that end, we developed an approach based on information theory metrics that provides bounds 
on the explosives detection performance of alternative system architectures with different feature extraction 
approaches.  

A drawback of using information theory is that computing the measures requires knowledge of the 
underlying probability distributions of the features for different materials. Furthermore, exact computation 
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can only be conducted for small classes of distributions such as Gaussian, Poisson, or exponential models. An 
alternative approach uses machine learning and nonparametric techniques, such as kernel density 
estimation, to estimate the underlying probability distributions of the different material classes from sample 
values. Unfortunately, most of these nonparametric techniques result in densities for which the relevant 
information theory divergence measures cannot be computed in closed form. This requires Monte Carlo 
techniques, a process that can be slow and require many samples when the feature values are 
multidimensional.  

In our work in Year 4, we adapted novel techniques in nonparametric statistics for estimating information-
theoretic measures of explosives detection performance directly using graph techniques, avoiding the need 
to learn distributions. Our algorithms are graph-based estimators based on minimal spanning trees that 
compute an approximation to a particular f-divergence measure. This f-divergence can estimate bounds on 
the Fisher information as well as the Bayes error in binary classification [28]. Unlike many other divergence 
measures, this f-divergence can be estimated directly from data samples without generating estimates of the 
underlying distributions. In our paper [29], we describe a framework for performance estimation for novel 
threat detection systems using these performance bounds. We illustrate the framework by computing 
bounds on the Bayes error for a class of multi-spectral X-ray CT systems using photon-counting detectors 
with different energy quantization bins.  

The use of photon-counting detectors, or with additional illumination spectra beyond two, raises the 
possibility of extracting more than two features for summarizing material properties. Previous work [1, 8, 
27] has established that two features (such as photoelectric and Compton coefficients) are usually sufficient
to represent the linear attenuation properties of materials with an effective atomic number below 14.
However, this representation is inaccurate for many explosive materials, such as Baratol or lead styphnate,
which have component elements with K-edges in the relevant energy range of the CT instruments (usually
30–120 keV). In Year 5, we explored the utility of additional basis representations when photon-counting
detectors are used. We developed CT algorithms that can reconstruct the coefficients of the different
materials in an image from multi-energy projection sinograms. These algorithms are extensions of the dual-
energy approach in [1, 8, 17], using enhanced sparse optimization techniques and statistical methods. The
idea is to select basis representations that capture the variability of the LACs in Figure 1 accurately.

Some of the potential basis representations that we explored are based on machine learning features. Given 
a database of materials with LACs, one can find basis functions using principal component analysis, and select 
the basis corresponding to the three to five largest principal directions, which typically capture most of the 
variability among the LACs of the different materials. If we separate the materials into explosives and non-
explosives, we can choose basis functions with techniques from discriminant analysis, which can capture the 
primary differences between the explosive class and the non-explosive class. In particular, we explored the 
use of the sequential linear discriminant analysis basis suggested in [12]. As a final set of basis functions, we 
explored extensions of physical bases such as photoelectric and Compton, adding the linear attenuation 
functions of materials with K-edges in the 30–120 keV region. While this last set of bases may have more 
functions than spectra used for sinogram measurements, we used a sparse decomposition where the 
measured photon counts for each spectrum k, denoted by bk and converted to log scale, are decomposed at 
each detector into sparse coefficients α for the basis using the following optimization: 

The resulting decomposition at each detector can be used to construct coefficient images, which provide the 
needed signals for explosives detection. Our results [15,30] established that this last set of basis functions 
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could be used to obtain accurate reconstructions of materials with high effective atomic numbers, provided 
their attenuation was small enough to allow for X-ray penetration.  

The main focus of our Year 6 work was on transitioning selected multispectral algorithms developed in 
earlier years for use in commercial CT systems for Department of Homeland Security (DHS) missions. In 
particular, we focused on developing algorithms for a dual-energy air cargo CT inspection system developed 
by our industrial partner, Astrophysics Inc. The challenge was to develop reconstruction and feature 
extraction approaches that achieve enhanced resolution, reduce artifacts, and increase the accuracy of object 
recognition, as well as achieving real-time computation objectives so that the resulting algorithms become 
part of a fielded prototype system.  

To enhance the resolution of the resulting dual-energy system, we developed a major improvement for the 
joint inversion approach, SPDE, that we had developed earlier in our program. In our paper [31], we 
improved on this approach by developing an edge-preserving total variation (EPTV) regularization 
algorithm that provides sharp boundary definition, even in regions where the materials are hard to observe. 
The main idea in this technique is to identify edges from an initial reconstruction, typically from the high 
energy image. We then define voxel-dependent regularization weights based on the magnitude of the 
gradient of the image. In two dimensions, these weights are defined as:  

where 𝐷𝐷𝑣𝑣  and 𝐷𝐷ℎ  are the vertical and horizontal directional gradients, and 𝜎𝜎 is a scale parameter. Using these 
edge-dependent weights, the reconstructed photoelectric and Compton images are generated using a 
weighted total variation iterative reconstruction technique, as the solution of: 

where the matrices 𝑊𝑊𝑣𝑣 and 𝑊𝑊ℎ are defined by the weight coefficients derived from the initial reconstruction. 

In Year 6 and 7, we continued our metal artifact reduction (MAR) work using deep neural networks, which 
we started in Year 5. One of the limitations of the MAR approach we developed in [14,15] was the large 
computation requirements. We have developed deep learning methods for artifact reduction in X-ray 
tomographic images. Many groups are applying conventional methods from computer vision to post-process 
images and are attempting to improve them. In contrast, we have focused on removing artifacts directly from 
tomographic projection data prior to image formation. The advantage of our approach is that it fits well into 
conventional data processing flows. In particular, once trained, applying a convolutional network to 
sinogram data can be very fast if it’s followed by conventional FBP reconstruction. Thus, our method can plug 
into existing vendor processing workflows with little alteration. Further, it is much faster during evaluation 
than computationally intensive iterative methods.  

C. Major Contributions

One of the major results of our work in Years 1 and 2 was the development of the SPDE reconstruction 
framework that generates a unified, joint estimate of the coefficient images for dual-energy CT. We 
implemented a 2D version of this frame and demonstrated results in reducing the artifacts in dual-energy 
photoelectric and Compton imagery on two representative slices using data generated for ALERT under Task 
Order 3 (TO3) [32]. 
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In previous annual reports, we have detailed results of our experiments with this algorithm, documented in [11, 
32]. Figure 2 shows results obtained from 95 kVp and 130 kVp data obtained from the Imatron C300 CT scanner 
under TO3. The top row shows the results of conventional reconstructions of the photoelectric and Compton 
coefficients. The presence of metal causes severe streaking in the photoelectric image and causes shading and 
intensity variation in homogeneous regions of the Compton image. Such light and dark streaking can lead to object 
splitting in subsequent segmentation and label tasks of an automatic target recognition, thus compromising 
threat identification. In contrast, the bottom row shows our SPDE method. The reduction of streaking artifacts is 
readily apparent, as is the improved uniformity of homogeneous object regions. 

Figure 2: Two example slices from the Imatron data set for TO3; (top) conventional FBP-based photoelectric and Compton 
reconstructions based on decoupled processing. Severe streaking and shading due to metal are evident; (bottom) new 
SPDE reconstructions. Reduction of streaking and improved uniformity of object regions are demonstrated. 

Another major result of our efforts from Years 2 and 3 was the learning-based joint segmentation and 
classification algorithm, LOIS, documented in [10-12]. In Year 4, these results were extended to a patch-based 
formulation to account for spatial correlations in voxel values [14]. To illustrate the improvements of the 
patch-based LOIS over the voxel-based LOIS algorithm, we tested both algorithms on some of the dual-energy 
reconstructions obtained from the TO3 dataset [32]. This data was collected on the Imatron scanner with 
two different peak voltages, 135 kV and 95 kV. Based on multiple images, we trained both a single-pixel 
appearance model and a 2×2 patch-based appearance model. The improvements are documented in [14].  

Another result in Year 4 was the development and implementation of the ADMM-based framework for 
discrete tomography that we term TOMO-SPL [19-21]. The variable splitting used in this framework breaks 
the original problem into subproblems that allow for the use of very efficient graph-cut methods, but more 
importantly, the overall solution method is very robust to data imperfections, as we illustrate next. Figure 3 
demonstrates the results of using our discrete tomography algorithm on an extremely sparse angle 
tomography problem with only eight projections, a very limited-angle problem. The phantom is binary 
valued. The results show that TOMO-SPL has enhanced accuracy over the alternatives based on gray-scale 
reconstruction followed by discretization.  

ALERT 
Phase 2 Year 7 Annual Report 

Appendix A: Project Reports 
Thrust R4: Video Analytics & Signature Analysis 

Project R4-C.1



Figure 3: Comparison of results with only eight projections: True is the true field; SART is a conventional 
thresholded reconstruction based on the SART method; DART is the popular “discrete algebraic reconstruction 
tomography” method; and TOMO-SPL is our new method. Our new method produces nearly perfect 
reconstructions even from extremely limited data.  

Note that TOMO-SPL preserves the connectivity between regions, prevents splits, suppresses noise, and 
maintains boundaries. These characteristics would prove valuable for use in new scanner geometries that 
use limited-angle sensing for speed, size, or power reasons.  

Other results in Year 4 included the new approach for MAR documented in [15,26]. The approach combines 
aspects from dictionary learning together with random sampling to provide enhanced reconstructions in 
regions with significant metal presence. We tested the algorithms both on simulated data, as well as data 
obtained from the Imatron scanner with significant metal presence. A key aspect of our algorithm is that it 
tries to preserve the information in projections that pass through metal regions. In simulated experiments, 
the average reconstructed attenuation coefficient in regions enclosed by metal was far more accurate than 
in competing algorithms in the literature.  

Another result in Year 4 was our work on performance bounds for detection performance of CT systems 
using nonparametric statistics. The key concept in our results, as explained in [28,29], is to simulate 
representative measurements from different materials and reconstruct features as points in n-dimensional 
space. By computing a minimum spanning tree using Euclidean distances for those points, one computes a 
statistic—namely the fraction of arcs in the minimum spanning tree that connect a point in one class 
(explosives) to a point in the other class (non-explosives). This statistic converges to an f-divergence that can 
be related to upper and lower bounds on the probability of error in detection.  

To evaluate our techniques, we constructed a database of 320 materials, with 124 explosives and 196 non-
explosives. For each of these materials, we obtained LAC information from National Institute of Standards 
and Technology models and used this to generate representative LACs as a function of X-ray energy. We then 
simulated measurements generated by photon-counting detectors with counts aggregated to varying 
numbers. As features, we reconstructed the average LACs in each detector energy bin. We also simulated 
measurements for a dual-energy system using photoelectric and Compton basis reconstructions. Our results 
are reported in the paper [29]. 

In Year 5 and continuing into Year 6 and 7, we developed deep learning methods for artifact reduction in X-
ray tomographic images. Our techniques are focused on removing artifacts directly from tomographic 
projection data prior to image formation. Once trained, applying a convolutional network to sinogram data 
can be very fast, making our method suitable for transition, as it is much faster than alternative MAR 
techniques.  

An overview of the approach is shown in Figure 4. We train a fully convolutional network to effectively 
remove metal artifacts in stream of commerce sinograms, conventionally reconstruct the output, and then 
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add the metal back in. By using modern conventional networks together with generalized adversarial 
learning [33], we can apply the network to the entire sinogram and not be limited to small patch-based 
processing, as some existing methods are. Since obtaining matched pairs of real sinograms for training is 
challenging, instead, we generate synthetic pairs by coupling a physically accurate X-ray simulator with a bag 
generator and then augment this synthetic data with modest real measurements via transfer learning.  

Figure 4: Overview of deep network MAR process. 

We show some results in Figures 5 and 6. We compare our novel conditional generative adversarial network 
(CGAN) method with traditional linear interpolation and weighted nearest neighbor MAR methods. These 
preliminary results focus only on suppression of artifacts from large metal objects; they have not been 
optimized. Further results can be found in our papers [34-38]. In Year 6, we further developed these initial 
results scaling up the training as well as testing of the method. The method was also extended to sparse angle 
and low-dose tomography problems, where sinogram angular coverage is limited. 

Figure 5: Comparison of MAR techniques for two slices 
of different suitcases with metal: (top left) original 
reconstruction; (top right) linear interpolation; 
(bottom left) weighted nearest neighbor algorithm; 
and (bottom right) reconstruction using our 
convolutional network MAR. 
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In Year 5, we developed new multispectral CT algorithms that use more than two spectra and use a new class 
of basis functions that can accurately represent energy-dependent X-ray transmission characteristics in few 
dimensions. Current approaches for dual-energy decomposition use basis functions such as photoelectric and 
Compton cross-sections that have a continuous dependence on energy. However, many materials of interest—
including explosives such as Baratol, where the LAC has discontinuities in energy due to the presence of atoms 
that include K-edges in the relevant energy region of the excitation—are used as contrast agents in medical 
imaging [39–41] precisely because their X-ray attenuation increases at specific energies that can be identified 
using multispectral CT imaging. However, medical imaging approaches for multispectral CT have been limited 
to direct imaging of each spectral signature separately, avoiding basis decompositions. 

One of our main contributions is the development of a new class of basis functions that can represent the 
LACs of complex materials that include atoms with K-edges in the region of interest. Figure 7 illustrates the 
LAC of Baratol versus energy, with a discontinuity in energy arising because of the K-edge of barium around 
38 keV. As the figure indicates, the LAC of Baratol is poorly approximated using a photoelectric-Compton 
basis, and imaging with dual-energy systems in this basis leads to Baratol being classified as iron. 

Figure 7: LAC of Baratol versus energy (red); best approximation using photoelectric and Compton basis (orange); 
and material that is confused with Baratol when using dual-energy CT (blue). 

Figure 6: Comparison of MAR techniques for two 
slices of different suitcases with metal: (top left) 
original weighted nearest neighbor algorithm; (top 
right) linear interpolation; (bottom left) weighted 
nearest neighbor algorithm; and (bottom right) 
reconstruction using our convolutional network 
MAR. 
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To address this problem, we investigated several approaches at modifying the set of basis functions used for 
multispectral imaging systems. Specifically, we introduced a new basis transform, termed SPECK, which is a 
short form for “sparse photoelectric, Compton, and K-edge basis.” The first two basis functions in the 
transform are the photoelectric and Compton basis functions. To these two functions, we added the LAC 
functions of the atoms that have K-edges in the energy range 30–130 keV. Note that these other basis 
functions are linearly independent from the first two bases and each other because they have discontinuities 
at different energy values. However, the number of basis functions K can be larger than the number of 
spectral measurements in each detector, so we developed a different approach to estimate the decomposed 
measurements. Specifically, we proposed sparse regression techniques, where the decomposed 
measurements 𝐴𝐴𝐿𝐿1 ,…, 𝐴𝐴𝐿𝐿𝐾𝐾  are obtained for each detector by solving:  

for a parameter λ that controls the desired level of sparsity in the coefficient vector. The details of this 
algorithm can be found in [15, 30].  

We also developed a multispectral CT reconstruction algorithm that takes the estimated coefficient 
sinograms from the previous equation and constructs coefficient images in the volume of interest. We 
implemented a joint reconstruction and recognition algorithm and tested it on simulated data from a 
multispectral system photon-counting detectors with ten energy bins in the energy range of 30–130 keV. The 
reconstructed coefficient images were used to recognize the type of material in each region. We compared 
the performance of the multispectral algorithms using the SPECK basis decomposition, the photoelectric-
Compton basis decomposition, reconstruction of the average LAC in each energy bin, and a data-driven basis 
derived from principal component analysis of a large set of materials. The results in Table 1 show that the 
multispectral CT with the SPECK basis significantly outperformed the alternatives in material recognition. 

Algorithm Region Classification Accuracy 
SPECK coefficients 86.7% 
PEC coefficients 75.0% 
Direct LAC reconstruction 65.6% 
PCA (6 coefficients) 61.6% 

Table 1: Material recognition performance for multispectral CT experiments using different basis decompositions. 

We also performed a set of experiments to recognize whether a material was an explosive or not using the 
same basis functions. In these experiments, we trained a random forest classifier on a set of 80 training 
images containing multiple materials, and then we tested the classification performance on a set of 20 test 
images. We ran the experiments with different regions of responsibility around each material, where larger 
regions (10%) indicated a range of 10% variability from the nominal LAC of each material in the test data. 
The resulting performance is shown in Table 2. The use of the SPECK basis improved explosives detection 
performance. Furthermore, the performance of the detection algorithms using the SPECK transform 
exhibited little degradation with increased region of responsibility, unlike the results for other algorithms. 
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Algorithm 
Accuracy  

(0% variability) 
Accuracy  

(5% variability) 
Accuracy  

(10% variability) 
Pho/Compton 94.1% 90.055 89.5% 
PCA-6 04.8% 86.0% 83.0% 
SPECK 99.4% 96.0% 96.0% 
Direct Recon 94.1% 88.8% 85.0% 

Table 2: Explosives detection performance for multispectral CT experiments using different basis decompositions. 

The final set of results in Year 5 was the development of a novel approach toward joint CT reconstruction, 
segmentation, and identification. This can be viewed as a significant generalization of our work on discrete 
CT discussed earlier. In discrete CT, the underlying volume being imaged is composed of regions with 
constant LACs, and the imaging model is assumed to be linear. In our model, the underlying volume is 
composed of regions with constant material types, where the LACs of material types can vary within each 
region and will be energy dependent, as is the case when using Bremsstrahlung X-ray sources. As such, the 
corresponding imaging model is nonlinear, as discussed earlier.  

The resulting algorithm, termed JRIDE (for “joint reconstruction and identification”), is illustrated in Figure 
8. The basis decomposition sinograms are inputs to the algorithm. JRIDE reconstructs basis coefficient
images as well as the material labels for the different regions in the image.

Figure 8: Structure of JRIDE algorithm. 

The details of the JRIDE algorithm can be found in [15,42]. JRIDE performs a maximum a posteriori estimate 
of both the coefficient images as well as the underlying region labels. As such, the problem is posed as a joint 
optimization over region labels Z and coefficient images W:  

The minimization is broken into overlapping minimizations, where given the coefficient image 
reconstructions W, one finds the best segmentation and material labels for regions Z (a discrete optimization) 
using an efficient multilabel graph cut algorithm [13]. Subsequently, given the region segmentation and 

ALERT 
Phase 2 Year 7 Annual Report 

Appendix A: Project Reports 
Thrust R4: Video Analytics & Signature Analysis 

Project R4-C.1



material labels, the coefficient images can be reconstructed as a continuous optimization problem where the 
coefficient reconstructions in each segmented region should be consistent with the region’s material label.  

Our JRIDE algorithm is similar in intent to a recent algorithm proposed for medical imaging in [43], named 
JE-MAP. The major differences between JRIDE and JE-MAP are twofold: first, JRIDE is based on a rigorous 
probabilistic maximum a posteriori framework; and second, JRIDE uses an efficient discrete optimization 
algorithm that is orders of magnitude faster than the corresponding algorithm used in JE-MAP. We evaluated 
our algorithm, JE-MAP, and an algorithm based on the conventional reconstruction, then we segmented and 
sequence classified the algorithms using a set of phantoms with 54 different materials present. The results 
are shown in Table 3. The JRIDE algorithm outperforms JE-MAP significantly, indicating the advantages of 
using a correct and rigorous probabilistic framework for the joint reconstruction and material identification 
problem. The results also indicate that there is significant improvement in material identification 
performance when material properties are used in an integrated manner with reconstruction, as indicated 
by the difference in performance between the sequential and JRIDE algorithms. 

Algorithm 
Region Classification Accuracy, 

No K-Edge Materials 
Region Classification Accuracy, 

All Materials 
JRIDE 100.00% 91.66% 
Sequential 85.41% 83.33% 
JE-MAP 56.25% 47.25% 

Table 3: Material identification performance for JRIDE versus alternative algorithms. 

The main focus of our Year 6 work was transitioning some of the multispectral algorithms developed in 
earlier years for use in commercial CT systems for DHS missions. We focused on developing algorithms for a 
dual-energy air cargo CT inspection system developed by our industrial partner, Astrophysics Inc. The 
specific prototype system we focused on is known as the Multi-View CT (MVCT) Cargo System. The system 
is designed as a noninvasive inspection method for the screening and detection of contraband and explosives 
in cargo skids at ports of entry. In 2017, the system was demonstrated in government trials using some of 
the single-energy reconstruction algorithms developed in our earlier work. The system has been deployed 
at J.F.K. International Airport in New York [44]. However, the current algorithms need improved processing 
to reduce imaging artifacts due to effects of beam hardening, photon starvation, and noise. In addition, the 
system reconstructs each spectrum independently, leading to a fundamental loss in resolution.  

To enhance the resolution of the resulting dual-energy system, we developed a major improvement for the 
joint inversion approach SPDE that we had developed earlier in our program, described earlier. This 
approach, EPTV regularization, is described in our paper [31]. Figure 9 shows the differences between the 
standard FBP reconstruction, the SPDE reconstruction, and our new EPTV reconstruction on two slices of a 
bag containing metal objects. As the figure indicates, the EPTV reconstructions do a better job of localizing 
the difficult reconstruction of photoelectric absorption when compared with the SPDE reconstruction. Both 
reconstructions are far superior to that obtained from filtered back-projection. Our EPTV algorithm can also 
be applied to single-spectrum reconstructions. We have done a prototype implementation for the 
Astrophysics MVCT instrument for single-spectrum reconstructions, and we are evaluating the enhancement 
in resolution in that limited-angle reconstruction scenario.  

As the results in Figure 9 indicate, reconstructing photoelectric absorption is a challenging problem in the 
presence of metal because the majority of the low energy photons that carry the most information about 
photoelectric absorption fail to reach the detectors. In collaboration with Lawrence Livermore National 
Laboratory (LLNL), we have explored alternative approaches for basis decomposition that are more suitable 
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for higher energy systems and provide more stable features in the presence of metal. In particular, we have 
been using a synthetic monoenergetic basis decomposition which is derived from the photoelectric 
absorption and Compton scatter basis functions. Figure 10 shows the reconstruction obtained using the 
EPTV algorithm with the photoelectric and Compton basis functions, versus the synthetic monoenergetic 
basis (SMB) functions. As the figure indicates, the reconstructions with SMB basis functions at low energies 
are much more stable than the photoelectric reconstructions, as each of the basis functions can be estimated 
using the high-energy photons that are more likely to reach detectors in the presence of metal. A significant 
advantage of SMB features is that there are analytical methods for estimating the effective atomic number 
Zeff and the electron density ρeff, which are features that allow for system-independent material 
characterization [27].  

Figure 9: Reconstruction of two slices for container with metal. FBP reconstructions are shown with (a, c) Compton 
coefficients and (b, d) photoelectric coefficients. SPDE reconstructions are shown with (e, g) Compton coefficients 
and (f, h) photoelectric coefficients. EPTV reconstructions are shown with (i, k) Compton coefficients and (j, l) 
photoelectric coefficients. 
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Figure 10: (left) FBP of Compton and photoelectric, (center) EPTV of Compton and photoelectric, and (right) SMB of 
high and low reconstructions.  

In our final Year 7 work, the data-domain deep learning methods were extended to seamlessly include 
learned image models in a modular framework allowing for improved reconstruction even for very 
challenging problems. This new framework, called DIP-MIR, combines learned prior models for data and 
image using consensus equilibrium, as shown in Figure 11.  

Results from an extremely limited data reconstruction example using 90 degrees worth of data are shown in 
Figure 12, comparing a state-of-the-art deep network post-processing method to the new integrated approach.  

Quantitative metrics in Table 4 confirm the visually apparent improvements provided by the new deep 
learning framework. 

Figure 11: Consensus equilibrium-based framework for 
inclusion of deep learning of both data and image behavior. 
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Method RMSE PSNR SSIM 
FBP + deep post-processing 103 23.32 0.48 
PnP − MBIR existing model based 78 25.65 0.79 
New DIP − MBIR deep learning based 51 29.50 0.87 

Table 4: Reconstruction performance comparison of different methods in Figure 12. 

In Year 7, we continued our transition work for dual-energy imaging with applications to cargo screening. A 
fundamental issue that arose in the transition effort is that material identification was that the presence of 
metal in cargo introduced significant artifacts that limited material recognition. We explored approaches for 
enhancing material recognition in the presence of metal artifacts. In our earlier work, we had developed 
techniques for compensating for metal artifacts that improved image quality. However, the improved quality 
often translated into erroneous material recognition, as the sonogram interpolation techniques modified the 
reconstruction parameters used for recognition.  

Figure 12: (top row) State-of-the-art deep-learning post-processing and (second row) model-based reconstruction 
compared to (third row) the new integrated consensus equilibrium-based deep-learning framework and (bottom 
row) ground truth for a challenging limited-angle tomographic reconstruction problem.  
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We conducted an in-depth study to determine whether the choice of basis functions in dual-energy 
reconstructions can mitigate the distortion in material recognition when metal is present. We explored the 
use of photoelectric and Compton basis (PCB) functions, synthesized monochromatic basis (SMB) functions, 
and material basis (MB) functions composed of polystyrene and aluminum for reconstruction. Using the 
reconstructed coefficient images, we generated estimates of effective atomic number and density. We 
simulated phantoms with regions of homogeneous materials between two copper sheets. The materials used 
in the simulations included a range of effective atomic number and electron density materials: 
polypropylene, citric acid, water, sapphire, magnesium, aluminum, black powder, hydrochloric acid, and, 
calcium chloride. For all cases, we conducted reconstructions using two different algorithms: total-variation 
(TV) and EPTV, with phantoms with and without metal present. 

The results are shown in Table 5. The table depicts the averages of relative mean absolute errors for effective 
atomic number Ze and electron density ρe across all materials. The results indicate two preliminary 
conclusions. First, reconstruction with EPTV results in enhanced accuracy for estimation of material 
properties for all three basis decompositions. The improvements were critical in the presence of metal, 
where the standard TV reconstruction techniques resulted in sizeable parameter errors, whereas the EPTV 
reconstructions led to much more accurate parameter estimates for all basis functions. The second 
conclusion is that material basis reconstructions may generate more robust material property estimates in 
the presence of metal. These preliminary conclusions require further experimentation with more complex 
phantoms for validation.  

Mean error (%) 
Directly from PCB Sampled LAC from PCB Sampled LAC from MB Directly from SMB 
Ze ρe Ze ρe Ze ρe Ze ρe 

TV (without metal) 
EPTV (without metal) 

0.71 
0.43 

0.75 
0.56 

0.72 
0.42 

0.55 
0.18 

0.99 
0.98 

0.86 
0.74 

0.72 
0.41 

0.65 
0.24 

TV (without metal) 
EPTV (without metal) 

49 
11.8 

2.7 
1 

49 
11.7 

33 
0.8 

52 
2.4 

66 
3.9 

40 
5.4 

29 
4.8 

Table 5: Average error in estimates of effective atomic number Ze and electron density ρe across all materials, when 
imaged in the presence of metal and without metal.  

The above results did not include any explicit sinogram correction to remove metal artifacts. Instead, they 
relied on the joint reconstruction algorithms to generate accurate coefficient images in the regions of 
interest. Most sinogram correction techniques have been developed for single energy spectrum systems and 
reduce artifacts such as metal blooming and streaking, as evidenced in our results in Figures 5 and 6. 
However, for material recognition, it is important to correct metal artifacts in multispectral images 
consistently and to estimate accurately the properties of the materials in the region. In Year 7, we conducted 
an investigation into developing dual-energy algorithms for material property estimation in the presence of 
metal. We explored approaches that apply dual-energy sinogram correction techniques for MAR prior to 
basis decompositions, as well as approaches that apply sinogram correction techniques after basis 
decomposition to the coefficient sinograms. We also explored algorithm variations to down-weight the 
accuracy of projections that include significant metal content. This is ongoing work that will be completed in 
the summer of 2020.  

Our initial results [45] are shown in Table 6, for two phantoms with significant metal content and four 
materials of interest: water, nylon, citric acid, and aluminum. In these algorithms, we used both a PCB basis 
decomposition and a material basis decomposition using aluminum and polystyrene. The results are 
encouraging; we are able to estimate the effective atomic number and the electron density of materials within 
1.5% of their true values using either of the two basis decompositions. Our goal this summer is to transition 
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these algorithms to work with cargo skids that contain boxes with some metal content, showing that we can 
generate accurate material property estimates.  

Table 6: Average percent error in estimates of effective atomic number Ze and electron density ρe across four 
materials, with two phantoms, when imaged in the presence of metal. The reconstruction algorithms use the EPTV 
algorithms with basis decompositions using either PCB or MB bases.  

D. Milestones

Major milestones achieved to date include: 

• Extended integrated segmentation and labeling framework from 2D to 3D.

• Developed and implemented performance prediction framework.

• Developed ADMM-based discrete tomography methods.

• Fused the artifact mitigation reconstruction and the integrated labeling frameworks into a discrete
tomography framework, resulting in the JRIDE algorithm.

• Incorporated dictionary-based representations for multi-energy tomographic inversion and
material characterization, resulting in the SPECK feature basis and associated reconstruction
algorithms.

• Extended the SPDE framework to multi-energy sensing and from 2D to 3D using the SPECK basis.

• Developed and evaluated extensions of deep learning techniques for MAR in CT systems.

• Developed fast GPU versions of multi-energy CT algorithms for transition to cargo and checkpoint CT 
systems.

• Developed EPTV joint reconstruction for enhanced resolution.

• Developed multi-spectral CT reconstruction techniques using synthetic measurement bases.

• Transitioned reconstruction algorithms into a prototype MVCT cargo skid scanner, developed by
Astrophysics Inc.

• Evaluated performance of multispectral CT algorithms with experimental data in collaboration with
LLNL using multispectral micro-CT systems.

• Transitioned multispectral CT algorithms to LLNL through reports for potential integration into
Livermore Tomography Tools.

• Developed and evaluated extensions of deep learning techniques for limited-angle CT reconstruction.

• Developed and evaluated new framework for inclusion of deep learning models of data and images
for challenging data CT reconstruction problems.
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• Developed fast, enhanced resolution versions of multispectral CT algorithms and transitioned to
cargo CT systems.

• Evaluated performance of multispectral CT algorithms in prototype cargo system for material
recognition.

• Developed approaches for multispectral CT material property recognition in the presence of
significant metal content and transitioned them to cargo CT systems.

E. Final Results at Project Completion (Year 7)

This project developed methods to improve imagery for explosives detection and restricted object detection 
in X-ray-based sensing for checked luggage, checkpoints, and air cargo skids. Furthermore, it developed 
algorithm technology that takes advantage of new developments in sensor technology, which will enable 
future systems to address emerging threats, and integrated emerging concepts in machine learning. In Years 
6 and 7, some of these reconstruction technologies were transitioned to a commercial cargo screening 
system. Over the life of the project, new algorithms and methods were developed that provided improvement 
over conventional methods of reconstruction for mono- and multi-energy X-ray CT scans. These algorithms 
provide the foundation for future CT systems that use multi-spectral excitation to obtain robust signatures 
for material identification.  

III. RELEVANCE AND TRANSITION

A. Relevance of Research to the DHS Enterprise

The improved artifact suppression methods enhance image quality, object boundary and volume estimates, 
and object localization. The direct discrete inversion approaches make better use of existing measurements, 
allowing for better detection. The multispectral CT algorithms can provide enhanced information for 
discriminating complex, higher effective atomic number explosives better than conventional dual-energy 
systems, increasing the probability of detection and resulting in fewer false alarms for both checkpoint and 
checked-luggage systems. The deep learning-based inversion frameworks allow for greatly improved 
imagery for challenging imaging problems. The multispectral material property reconstruction algorithms 
that work robustly in the presence of metal provide the foundation for automated threat recognition 
algorithms that can work in difficult luggage and cargo screening scenarios.  

Overall, these methods can increase the probability of detection as well as reduce the number of false alarms, 
which can, in turn, reduce the need for on-screen anomaly resolution protocol (OSARP) and manual 
inspection. These concerns will grow as the use of multi-spectral X-ray scanning increases at the checkpoint. 

B. Status of Transition at Project End

The most significant transition of this work has been in collaboration with Astrophysics Inc., where we have 
transitioned subsets of the developed algorithms to a fielded air cargo skid scanner. Algorithms transitioned 
include several dual-energy reconstruction algorithms for limited angle CT, including edge preserving 
regularization as well as enhanced material property reconstruction algorithms in the presence of metal for 
improved automated threat recognition. While several algorithms have been transitioned, additional 
modifications are in progress as our partner Astrophysics Inc. adds operational requirements for their 
instrument.  
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C. Transition Pathway and Future Opportunities

In developing next-generation reconstruction algorithms, we have engaged in extensive discussions with 
potential transition partners. However, upgrading software in certified instruments is seldom desirable 
unless there are new requirements that the instrument must satisfy. Hence, we focused our attention on 
vendors developing new instruments. Our industrial partner, Astrophysics Inc., was developing a novel 
limited-field-of-view, dual-energy CT scanner for cargo skids and needed algorithms that significantly 
extended the state of the art for this design. We focused much of our transition work on this direction, and 
our algorithms have been at the heart of the CT reconstruction used in Astrophysics’s Multi-View CT Cargo 
Scanner. We have continued our discussions with other vendors, looking for new opportunities for 
transitioning our algorithms.  

D. Customer Connections

• Francois Zayek, Astrophysics Inc., ALERT industrial partner, met weekly.
• Harry Martz and Kyle Champley, LLNL, met twice per month.
• Ronald Krauss and Robert Kleug, DHS, met occasionally.

IV. PROJECT ACCOMPLISHMENTS AND DOCUMENTATION

A. Education and Workforce Development Activities

1. Student Internship, Job, and/or Research Opportunities

a. Ms. Devadithya will be an intern at Lawrence Livermore National Laboratory in the Materials
Research Institute working under Dr. Harry Martz. Her internship was delayed until Sept. 2020
because of Livermore workplace restrictions due to the COVID-19 virus.

B. Peer Reviewed Journal Articles

1. Ghani, M.U., & Karl, W.C. “Fast Enhanced CT Metal Artifact Reduction Using Data Domain Deep
Learning.” IEEE Transactions on Computational Imaging, 6, 27 August 2019, pp. 181–193.
https://doi.org/10.1109/TCI.2019.2937221.

Pending – 

1. Ghani, M.U., & Karl, W.C. “Integration of Data and Image Priors for Image Reconstruction Using
Consensus Equilibrium.” Submitted to IEEE Transactions on Computational Imaging.

C. Peer Reviewed Conference Proceedings

1. Ghani, M.U., & Karl, W.C. “Integrating Data and Image Domain Deep Learning for Limited Angle
Tomography Using Consensus Equilibrium.” IEEE Conference on Computer Vision, Seoul, Korea. 22
October–2 November 2019.

2. Ghani, M.U., & Karl, W.C. “Integrating Learned Data and Image Models through Consensus
Equilibrium,” in Computational Imaging, Bouman, C.A., & Sauer, K., editors, Process of Electronic
Imaging, Burlingame, CA. 26–30 January 2020.

3. Ghani, M.U., & Karl, W.C. “Integrating Learned Data and Image Models through Consensus
Equilibrium for Model-Based Image Reconstruction.” International Symposium on Biomedical
Imaging, Iowa, IA. April 2020.
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4. Devadithya, S., & Castañón, D. “Material Identification in Presence of Metal for Baggage Screening,” in
Computational Imaging, Bouman, C.A., & Sauer, K., editors, Process of Electronic Imaging, Burlingame,
CA. 26–30 January 2020.

D. Other Presentations

1. Karl, W.C. “Data and Image Domain Deep Learning for Tomographic Computational Imaging.” Invited
talk in Institute for Mathematics and its Applications Workshop on Computational Imaging, 14–18
October 2019.

E. Student Theses or Dissertations Produced from This Project prior to Year 7

1. Chen, K. “Reconstruction Algorithms for Multispectral Diffraction Imaging.” PhD Thesis, electrical
engineering, Boston University, May 2014.

2. Eger, L. “Enhanced Information Extraction in Multi-Energy X-Ray Tomography for Security.” PhD
Thesis, electrical engineering, Boston University, May 2014.

3. Tuysuzoglu, A. “Robust Inversion and Detection Techniques for Improved Imaging Performance.”
PhD Thesis, electrical engineering, Boston University, May 2014.

4. Babaheidarian, P. “Algorithms for Enhanced Artifact Reduction and Material Recognition in
Computed Tomography.” PhD Thesis, electrical engineering, Boston University, May 2018.

5. Sun, Z. “Reduced and Coded Sensing Methods for X-Ray Based Security.” PhD Thesis, electrical
engineering, Boston University, September 2016.

Pending – 

1. Ghani, M.U. “Data and Image Domain Deep Learning for Tomographic Computational Imaging.” PhD
Thesis, electrical engineering, Boston University, in progress—expected completion December 2020.

2. Devadithya, S. “Enhanced Reconstruction and Material Recognition in X-Ray CT for Security
Applications.” PhD Thesis, electrical engineering, Boston University, in progress—expected
completion May 2021.
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