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II. PROJECT DESCRIPTION

Core funding for this project ends in Year 3 per the outcome of the Biennial Review process. 

A. Project Overview

We propose algorithms based on a hierarchical network of classiϐiers. This is critical both in portal systems, 
where high throughput requires signiϐicant automated decision support, and in standoff systems where the 
proliferation of multimodal data can overwhelm human interpretation. 
Speciϐically, this project will leverage existing sensors, imaging modalities, and explosive detection algorithms. 
Some modalities, such as Active Millimeter Wave (AMMW) and Human Inspection, can be time-consuming. 
To improve detection performance and maintain high-throughputs, the proposed scheme will selectively 
route subjects sequentially through different stages. Subjects that do not pose threats exit the system early. 
In our preliminary experiments involving several benchmark datasets, we have shown that on average our 
scheme can improve throughput by as much as 50% without sacriϐicing detection performance. We have also 
conducted experiments with AMMW, Infrared and Passive Millimeter Wave (PMMW) modalities. For this sce-
nario in our proposed scheme, we can show that with 47% AMMW utilization, namely, on 47% of selectively 
chosen subjects, we can match the detection rate when AMMW is used on all of the subjects. Since AMMW is 
far more time-consuming than Infra-Red (IR) it follows that our throughput gains can be signiϐicant.
The suite of new algorithms will improve effectiveness in the screening of people in airports, which is of sig-
niϐicant interest to TSA.  Our fundamental assumption is that it is too slow or costly to collect full sensor data 
on every object of interest, either for training, or during real-time operation. Thus, it is important to develop 
technologies that identify the right set of information to collect on individuals automatically, based on the 
most recent collected information. 
The new algorithms will also impact standoff detection algorithms for suicide bombers, which is of interest 
to other agencies within DoD and the State Department. The efforts are aimed at developing a robust surveil-
lance system for pervasive and persistent detection capability. Improved Automatic Target Recognition (ATR) 
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concepts for Advanced Imaging Technology (AIT) is of particular interest to mm-wave and X-ray backscatter 
vendors.  Our goal is to perform standoff detection of concealed explosives at low false alarm probability and 
near certain probability of detection. 
The long-range impact of this research will be the development of adaptive, high throughput risk-based 
screening algorithms for different combinations of sensing modalities that exhibit improved sensitivity/
speciϐicity over conventional approaches.

B. Biennial Review Results and Related Actions to Address 

The project had high technical ratings, but the project also had weaknesses, including the lack of speciϐic 
transition pathways, milestones, and approaches for evaluation of competing methods.  As such, the project 
was not recommended for continuation in Year 4. 

C. State of the Art and Technical Approach 

Conceptually, our work is closely related to Xu et al. [1,2] and Kusner et al. [3], who introduce Cost-Sensitive 
Trees of Classiϐiers (CSTC) and Approximately Submodular Trees of Classiϐiers (ASTC), respectively, to reduc-
ing test time costs. Like our effort, they propose a global Empirical Risk Minimization (ERM) problem. They 
solve for the tree structure, internal decision rules, and leaf classiϐiers jointly using alternative minimization 
techniques.  Recently, Kusner et al. [3] proposed Approximately Submodular Trees of Classiϐiers (ASTC), a 
variation of CSTC which provides robust performance with signiϐicantly reduced training time and greedy 
approximation, respectively. Additionally, Nan et al. [4] proposed random forests to efϐiciently learn budgeted 
systems using greedy approximation over large data sets. 
The subject of this project is broadly related to other adaptive methods in the literature. Generative methods 
[5-8] pose the problem as a partially observed markov decision process (POMDP), learn conditional proba-
bility models, and myopically select feature based information gain of unknown features. Markov Decision 
Process (MDP) based methods [8-11] encode current observations as state; unused features as action space; 
and formulate various reward functions to account for classiϐication error and costs. He et al. [10] apply imi-
tation learning of a greedy policy with a single classiϐication step as actions. Dulac-Arnold et al. [9] and Kara-
yev et al. [8] apply reinforcement learning to solve this MDP. Benbouzid et al. [11] propose classiϐier cascades 
with an additional skip action within an MDP framework. Nan et al. [4] consider a nearest neighbor approach 
to feature selection, with conϐidence driven by margin magnitude.

C.1. Hierarchical network of classi iers for high-throughput screening

Our work is closely related to the prediction time active feature acquisition (AFA) approach in the area of 
cost-sensitive learning. Our objective is to make sequential decisions about whether or not to acquire a new 
feature to improve prediction accuracy. Figure 1 (on the next page) illustrates some of the main concepts 
in this context. An individual, or their baggage, could either be inspected by an imaging technique such as 
X-Ray or Active Millimeter Wave, or inspected by a human. Some of these inspections are time-consuming, 
leading to low throughput. We can view the suite of sensors as a network and sequentially determine which 
object must be routed through what sensor. There are cases where an object must be ϐlagged for complete 
human inspection while there are other cases that may only require X-ray. We hope to learn a policy that will 
adaptively determine which sensors to utilize for an object. In this way we propose to improve the average 
throughput. 
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There is extensive literature on adaptive methods for sensor selection for reducing test-time costs. It argu-
ably originated with detection cascades, a popular method in reducing computation cost in object detection 
for cases with highly skewed class imbalance and generic features. Computationally cheap features are used 
at ϐirst to ϐilter out negative examples and more expensive features are used in later stages. Our technical ap-
proach is closely related to our earlier work [12,13]. This earlier work is based on minimizing the Empirical 
Risk.  In this context, detection cascades, classiϐier cascades and classiϐication trees have been developed to 
handle balanced and/or multiclass scenarios. Trapeznikov et al. [12] proposed a similar training scheme on 
cascades. [12] utilizes simple decision functions for different nodes of the cascade and learns these decision 
rules by means of alternating optimization. Here we extend these approaches and study the problem of re-
ducing test-time acquisition costs in classiϐication systems. Our goal is to learn decision rules that adaptively 
select sensors for each example as necessary to make a conϐident prediction. We model our system as a 
directed acyclic graph (DAG) where internal nodes correspond to sensor subsets, and decision functions at 
each node choose whether to acquire a new sensor or classify using the available measurements. This prob-
lem can be posed as an empirical risk minimization over training data. Rather than jointly optimizing such a 
highly coupled and non-convex problem over all decision nodes, we propose an efϐicient algorithm motivated 
by dynamic programming. We learn node policies in the DAG by reducing the global objective to a series of 
cost sensitive learning problems. Our approach is computationally efϐicient and has proven guarantees of 
convergence to the optimal system for a ϐixed architecture. In addition, we present an extension to map other 
budgeted learning problems with large number of sensors to our DAG architecture and demonstrate empir-
ical performance exceeding state-of-the-art algorithms for data composed of both few and many sensors. 

C.1.a. Concept

We brieϐly present some of the mathematics that govern much of our approach. Note that in our context, the 
statistical models governing sensor measurements are unknown. Our network of classiϐiers/sensors setup is 
described in Figure 2 (on the next page) for the purpose of illustration. For explosives detection, one could ac-
quire measurements ϐirst from a mm-wave scanner. Based on these measurements, one may decide whether 
or not to require a part/full-body inspection by a different technique. The main difference between the con-
ventional decision scheme and our problem is that we also incorporate throughput in addition to detection 

Figure 1: Proposed method illustrates a hierarchical network of classifi ers for high-throughput screening for check-

point screening. Some modalities such as AMMW and Human Inspection can be time-consuming. To improve detec-

tion performance at high-throughputs, the proposed scheme routes subjects sequentially through diff erent stages. 

Subjects who do not pose threats exit the system early such as after an IR –based diagnosis.
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accuracy. We will show in some of our experiments that we can obtain the same accuracy with 50% increase 
in throughput. 

C.1.b. Theory

A data instance, X, can consist of M sensor measurements, x = (x1, x2, … xM). Each data instance has a label 
(threat and type of threat, or not-a-threat) and in general belongs to one of the L classes indicated by its label 
y. Each sensor’s throughput rate is encoded in terms of a cost measure, Cm. We represent our decision system 
as a binary tree.  The binary tree is composed of K leafs and K - 1 internal nodes. At each internal node, j, is 
a binary decision function, sign (gj(x)). This function determines which action should be taken for a given 
example. The binary decisions, gj(x)’s, represent actions from the following set: stop and classify with the 
current set of measurements, or choose which sensor to acquire next. Each leaf node, k = 1, …. K, represents 
a terminal decision to stop and classify based on the available information. We assume that the classiϐiers (or 
detectors) at each leaf, fk (x), are given and ϐixed. We propose methods for learning these detectors as part of 
our second thrust. Our objective here is to learn the decision functions: gj (x)’s. The learning problem can be 
described in terms of a risk-minimization objective:

Here g=(g1, g2, … gK) is the set of decision functions corresponding to the different imaging modalities (sensor 
measurements) and Rk(fk,x,y) is the risk of making a decision at a leaf k . It consists of two terms: error of the 
classiϐier at the leaf, and the cost of sensors acquired along the path from the root node to the leaf. Sk is this 
set of sensors, and α is a parameter that controls trade-off between acquisition cost and classiϐication error.

Our goal is to ϐind decision functions that minimize the average empirical risk, namely,

Figure 2: An example decision system of depth two: node g
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Unfortunately, the objective is not only non-convex, but the decision at any stage, j, is hopelessly coupled (de-
pendent) on decisions made at earlier stages as we see from the equation below:

where, Pk,j takes binary values and is one, if and only if, on the path to leaf k, a decision node j takes a positive 
decision. Similarly, Nkj also takes binary values and is one, if and only if, on the path to leaf k, a decision node 
j takes a negative decision.
For this reason, the state-of-the-art has considered special cases of this objective either by ignoring informa-
tion from earlier stages and/or myopic settings (a scenario where only one sensor is going to follow next). 

C.2. Results in Year 3: Adaptive Sensor Acquisition based on Directed Acyclic Graphs

In Year 3, we developed a new adaptive sensor acquisition system learned using labeled training examples. 
The system, modeled as a DAG, is composed of internal nodes, which contain decision functions, and a single 
sink node (the only node with no outgoing edges (see Fig. 3 on the next page)), representing the terminal 
action of stopping and classifying (SC). At each internal node, a decision function routes an example along one 
of the outgoing edges. Sending an example to another internal node represents acquisition of a previously 
un-acquired sensor, whereas sending an example to the sink node indicates that the example should be clas-
siϐied using the currently acquired set of sensors. The goal is to learn these decision functions such that the 
expected error of the system is minimized subject to an expected budget constraint. 
First, we consider the case where the number of sensors available is small, though the dimensionality of data 
acquired by each sensor may be large (such as an image taken in different modalities). In this scenario, we 
construct a DAG that allows for sensors to be acquired in any order and classiϐication to occur with any set 
of sensors. In this regime, we propose a novel algorithm to learn node decisions in the DAG by emulating dy-
namic programming (DP). In our approach, we decouple a complex sequential decision problem into a series 
of tractable cost-sensitive learning sub-problems. Cost-sensitive learning (CSL) generalizes multi-decision 
learning by allowing decision costs to be data dependent. Such reduction enables us to employ computation-
ally efϐicient CSL algorithms for iteratively learning node functions in the DAG. In our theoretical analysis, we 
show that given a ϐixed DAG architecture, the policy risk learned by our algorithm converges to the Bayes risk 
as the size of the training set grows.
Next, we extend our formulation to the case where a large number of sensors exist, but the number of distinct 
sensor subsets that are necessary for classiϐication is small (where the depth of the trees is ϐixed to 5). For 
this regime, we present an efϐicient subset selection algorithm based on sub-modular approximation. We 
treat each sensor subset as a new “sensor,” construct a DAG over unions of these subsets, and apply our DP 
algorithm. Empirically, we show that our approach outperforms state-of-the-art methods in both small and 
large-scale settings. 
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C.2.a. Experiments

We have compared our approach to existing state-of-the-art techniques, including myopic approaches, as 
well as alternative minimization techniques. The discriminative myopic strategy rejects observations by 
thresholding classiϐication conϐidence at each stage. This strategy does not consider future costs, instead 
it looks only at current uncertainty and is therefore considered myopic. The non-convex (alternative mini-
mization) algorithm attempts to minimize the empirical risk of the system using alternating minimization. 
After a random initialization, the algorithm attempts to optimize each decision function, g, by ϐixing all other 
decision functions and minimizing the empirical risk. 
We performed experiments on several datasets including the threat dataset. Our results are based on the 
datasets chosen from UCI machine learning repository. As seen in Figure 4 (on the next page), our algorithm 
outperforms the conventional myopic strategy and achieves the same performance as the inefϐicient alter-
native minimization method. More importantly, these results also show that we can double the throughput 
while achieving nearly the optimal accuracy.
Unlike our LP tree work [13], which could only scale to small feature dimensions, our new DAG method can 
scale to very large data sets with large feature dimensions. We simulate performance of our method against 
benchmark datasets and compare it to several state-of-the-art algorithms below.

Figure 3: A simple example of a sensor selection DAG for a three sensor system. At each state, represented by a binary 

vector indicating measured sensors, a policy chooses between either adding a new sensor or stopping and classifying. 

Note that the state S
sc

 has been repeated for simplicity.
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As seen in Figure 4, the systems learned with a DAG outperform the LP tree systems. Additionally, the perfor-
mance of both of the systems is signiϐicantly better than previously reported performance on these data sets 
for budget cascades. This arises due to both the higher complexity of the classiϐiers and decision functions as 
well as the ϐlexibility of sensor acquisition order in the DAG and LP tree compared to cascade structures. For 
this setting, it appears that the DAG approach is superior approach to LP trees for learning budgeted systems.
Figure 5 shows performance comparing the average cost vs. average error of CSTC, ASTC, and our DAG sys-
tem. The systems learned with a DAG outperform both CSTC and ASTC on the MiniBooNE and Forest data 
sets, with comparable performance on CIFAR at low budgets and superior performance at higher budgets.

C.2.b. Results on Explosive Simulants Dataset

We now describe some of our results on a dataset containing explosive simulants, provided by Reveal Imag-
ing.  This dataset contains images taken of people wearing various simulants, obtained by different sensing 
modalities at a modest standoff distance. The imaging is done in three modalities: IR, PMMW, and AMMW. All 
the images are registered to a common coordinate system. We extract many patches from the images and use 
them as our training data. We learn threat/no threat detectors for this training data using an approach that 
will be described in Section C.3.  For the purpose of describing our experiment here, a patch carries a binary 
label such that it either contains a threat, or it is clean. IR and PMMW are the fastest imaging modalities but 
also less informative. AMMW is slow since it requires raster scanning a person but it is the most useful. There 
are a total of 1,230 body images in the dataset. 

Figure 4: Average number of sensors acquired vs. average test error comparison between LP tree systems and DAG 

systems.

Figure 5: Comparison between CSTC, ASTC, and DAG of the average number of acquired features (x-axis) vs. test error 

(y-axis).

ALERT 
Phase 2 Year 3 Annual Report

Appendix A: Project Reports 
Thrust R4: Video Analytics & Signature Analysis 

Project R4-B.3



We use this data set to illustrate our adaptive screening technique.  The idea is to determine which types of 
imagery should be collected on each individual.  An example of a basic inspection strategy is illustrated in 
Figure 6.  Initially, a PMMW image may be examined for indicators of concealed objects.  Subsequently, an 
IR image can also conϐirm the presence of such concealed objects.  Finally, an AMMW image can be used to 
provide sufϐiciently discriminative information to classify the object as a threat.  Note that, after each image 
is collected, the system can decide there is no threat present, thereby avoiding the extra effort to collect the 
additional imagery.  

We also obtained ROC curves that highlight the advantages of using our inspection strategy over a centralized 
approach, wherein the person is scanned with all the sensor modalities before any decision is made.  Figure 
7 (on the next page) illustrates the performance of the adaptive system with different sensing budgets, pa-
rameterized by the reject rate: the percentage of individuals that require AMMW information to determine a 
good threat/no threat decision.  Note that at a 50% reject rate, we obtain the same detection/false alarm per-
formance as a centralized system where all the sensor measurements are ϐirst obtained before any decision 
is made, indicating that our adaptive system would use AMMW in only 50% of the individuals in the system.

Figure 6: Illustration of Inspection Strategy consisting of three diff erent scanning schemes.
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D. Major Contributions

We have developed new approaches for adaptive classiϐiers that can separate test cases into explosive 
threats, non-threats, and ambiguous objects needing further attention, in a Bayes optimal manner; taking 
into account the relative costs of different types of errors plus the cost of additional tests. These techniques 
have been applied successfully in many real-world datasets increasing the sensitivity and speciϐicity of the 
automated decisions.  The underlying assumption is that there is an expensive, but very accurate, mode of 
detection (e.g. manual inspection) that should be invoked infrequently.
Our recent work [4,14,15] is based on Prediction Time Cost Reduction approach [16]. Speciϐically, we assume 
a set of training examples in which measurements from all the sensors or sensing modalities, as well as the 
ground truth labels are available. Our goal is to derive sequential reject classiϐiers that reduce cost of mea-
surement acquisition and error in the prediction (or testing) phase.
We developed a novel adaptive acquisition system based on DAG where internal nodes correspond to sensor 
subsets, and decision functions at each node choose whether to acquire a new sensor or classify using the 
available measurements. This problem can be posed as an empirical risk minimization over training data. 
Rather than jointly optimizing such a highly coupled and non-convex problem over all decision nodes, we 
propose an efϐicient algorithm motivated by dynamic programming. We learn node policies in the DAG by 
reducing the global objective to a series of cost sensitive learning problems. Our approach is computationally 
efϐicient and has proven guarantees of convergence to the optimal system for a ϐixed architecture. 

Figure 7: ROC curves for adaptive inspection scheme with diff erent sensing budgets. The diff erent curves correspond 

to the average number of instances when AMMW is utilized for detecting threats. Thus the blue curve is the base-

line and corresponds to the case when AMMW is never used. We note that with 47% AMMW utilization, the ROC 

performance is close to using 100% AMMW utilization, i.e., on all subjects.
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E. Milestones

A signiϐicant milestone that was achieved was the development of data-driven approaches for designing 
multi-stage adaptive detection systems using different modalities, which optimizes detection performance 
when sensing throughput is constrained.  This is applicable to the design of high-throughput screening al-
gorithms for checkpoint as well as checked luggage environments.  These algorithms were documented and 
published in highly competitive open literature publications (Wang et. al. NIPS 2015, Nan et. al. ICML 2015).  

F. Future Plans

Since the project was not recommended for continued funding, there are no future plans.

III. RELEVANCE AND TRANSITION

A. Relevance of Research to the DHS Enterprise

• Development of multi-sensor ATR algorithms for check point and checked luggage that maintain through-
put constraints. 

• Development of adaptive sensing algorithms for risk-based screening at checkpoints
• Improved probability of false alarm and probability of detection while maintaining needs system through-

put at checkpoints. 

B. Potential for Transition

• Improved ATR concepts for AIT are of particular interest to mm-wave imaging and X-ray backscatter 
imaging vendors.

• Improved algorithms for exploitation of real time sensing information in adaptive risk-based screening 
for checkpoint and checked luggage applications. 

C. Transition Pathway 

We presented our results at workshops to industry practitioners, and will continue to discuss potential path-
ways for transition with our industrial partners.   

D. Customer Connections

Due to the speculative, basic research nature of the work, we have not pursued customer connections at this 
time.  The research is targeted for future system concepts.  

IV. PROJECT ACCOMPLISHMENTS AND DOCUMENTATION 

A. Peer Reviewed Journal Articles 

1. M. Rohban, V. Saligrama, & D.M. Vaziri. “Minimax Optimal Sparse Signal Recovery with Poisson Statis-
tics.” IEEE Transactions on Signal Processing, 64(13), February 2016, pp. 3495 – 3508. DOI:10.1109/
TSP.2016.2529588

B. Peer Reviewed Conference Proceedings

1. J. Wang, K. Trapeznikov, & V. Saligrama. “Efϐicient Learning by Directed Acyclic Graph For Resource 
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Constrained Prediction.” 2015 Neural Information Processing Systems (NIPS), Montreal, Canada, 
December 7-12, 2015. 

2. F. Nan, J. Wang, & V. Saligrama. “Feature-budgeted random forest.” Proceedings of the 32nd Interna-
tional Conference on Machine Learning, JMLR: W&CP, Volume 37, Lille, France, July 6-11, 2015.

C. Software Developed

1. Algorithms: 
a. Group Membership Prediction, ICCV 2015
b. Zero-Shot Learning via Semantic Similarity Embedding, ICCV 2015 
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