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II. PROJECT DESCRIPTION

A. Project Overview

3D computed tomography (CT) has been widely deployed in air transportation security applications such as 
check-baggage screening because of its ability to better detect threats. Based on this success, there is great 
interest in deploying CT in other areas of transportation security, such as checkpoint security for carry-on 
baggage and cargo inspection. However, for applications such as checkpoint screening and cargo, it is likely 
not practical to support the traditional rotating gantry structure or even rotating tables that can collect a full 
set of projection views assumed by traditional Fourier-based reconstruction methods. This means that this 
new generation of scanners will need to depend on a new generation of image reconstruction algorithms that 
go beyond the limitations of Fourier-based reconstruction methods, such as filtered back-projection (FBP).  

The following are major challenges faced by next-generation CT systems for Transportation Security 
Administration (TSA) applications. 

• Large volumes: Cargo scanning at the resolution required to detect threats will drive systems to
reconstruct enormous numbers of voxels. Using existing methods, this has two undesirable
consequences. First, it requires more views, which slows down physical scanning; and second, the
increase in the amount of data and voxels dramatically slows reconstruction.

• Dense materials: In cargo applications, large volumes of dense material will make scanning difficult
since photon penetration will be limited.

• Sparse views: Physical and practical constraints will likely limit the number of views that can be
acquired by fieldable scanning systems for both baggage and checkpoint scanning. This means that
reconstruction algorithms will need to be able to reconstruct accurate 3D volumes from sparse views.

• Beam hardening and scatter due to metal: Heterogeneous materials such as metals create a
combination of beam hardening and scatter effects that break traditional models of reconstruction. While 
beam hardening for a single material without scatter can be compensated for, it is nearly impossible to
accurately compensate for the beam hardening in a single-energy system when it is combined with
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scatter effects and multiple materials. This creates large-scale artifacts that can cause erroneous 
segmentation and missed detection of threats. 

B. State of the Art and Technical Approach

Over the last decade, model-based iterative reconstruction (MBIR) and other regularized iterative 
reconstruction methods have changed how people think about 3D reconstruction from CT data [1–4]. By 
using MBIR, we have demonstrated that 3D reconstruction from sparse views is possible [5, 6]. However, 
major challenges still remain. While MBIR reconstruction methods offer some solutions to these problems 
[7, 8], these algorithms suffer from very high computational requirements, continued (but reduced) 
susceptibility to beam-hardening/scatter artifacts due to metal, and continued (but reduced) degradation in 
quality from sparse view data.  

A new generation of reconstruction algorithms that blend physical models with artificial intelligence (AI) or 
machine learning (ML) methods hold great promise in addressing these challenges. The breakthroughs of 
ML and in particular deep learning (DL) methods have opened new directions for both dramatically reducing 
computation and dramatically improving quality of reconstructions. The challenge of ML-based methods is 
to integrate the well-understood models of physics with the information that can be extracted from large 
corpuses of data. In some cases, this blending of data and physics models can be subtle, such as in the 
modeling of metal artifacts that requires the integration of well-understood physics models with empirical 
models of scatter distribution in the presence of unknown physical scattering parameters. 

Following is a list of advanced technologies that will likely be critical to future CT imaging technologies 
needed by the Department of Homeland Security (DHS). 

• Integrated data, physics, and sensor models: Next generation CT algorithms will need to integrate
multiple sources of information from the physical sensor measurements, the known physics of the
materials, and the empirical data distributions in order to create accurate 3D reconstructions with the
limitations of sparse view data, measurement distortion due to scattering and beam hardening,
heterogeneous materials, large and dense objects, and detector and photon counting noise sources. To
meet this challenge, a new generation of algorithms should be developed for the integration of
heterogeneous information that we call multi-agent consensus equilibrium (MACE) [9]. MACE methods
are based on the plug-and-play (PnP) methods [10, 11], but they generalize to multiple sources of
information that may not be formulated in an optimization framework. This framework can be used to
integrate traditional physics-based models with ML models based on DL [12, 13].

• Integrated beam-hardening and scatter models: The complex interactions of beam-hardening and
scatter are extremely difficult to accurately model for heterogeneous materials scanned with single
energy CT. To address this, one can use a blend of physics and ML modeling to integrate the known
physics of CT sensors with the higher order data-driven sensor models. By integrating this type of model
with prior image models, our goals was to reduce metal artifacts and improve segmentation accuracy.

• Integrated segmentation models: The ultimate goal of reconstruction is to accurately detect targets,
and this is critically dependent upon accurate segmentation. ML methods provide a formal basis for
incorporating segmentation into the reconstruction process either through training or ML-based prior
models. Our goal was to use the methods such as PnP to integrate in segmentation models, or to directly
train ML methods to incorporate segmentation into the reconstruction process.

• Fast reconstruction: ML methods can be used in a variety of ways to speed up reconstruction [14, 15,
16]. One approach is to train DL methods to remove noise, but this is not effective for artifact reduction.
An alternative approach that we have pioneered is to use DL methods to accurately approximate MBIR
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reconstructions in a method we call DL-MBIR [14, 15]. One particular extension of this is 2.5D DL-MBIR, 
which uses convolutional neural networks to accurately approximate MBIR reconstructions. A goal was 
to use the 2.5D processing structure to achieve quality near full 3D processing, with computation that is 
very close to 2D. 

• Incorporation of side information: In many applications, such as cargo scanning, there is side
information available, such as manifests, that describe cargo contents that can be potentially used to
improve reconstruction quality or improve segmentation or detection accuracy. This will require the
formulation of general methods for incorporating side information in the reconstruction, segmentation,
and threat detection process.

• Dynamic sparse-view selection: Large dense objects present special challenges in 3D imaging due to
the difficulty of achieving sufficient penetration. While some of these can be addressed using high Kv X-
ray sources and photon counting detectors, these hardware upgrades add cost and also may not be
sufficient. There is a need to develop methods for dynamic acquisition of sparse views [17] that can
achieve higher signal-to-noise ratio (SNR) given a fixed time budget by selecting views that are more
informative based on dynamic measures of object content and structure. We have based this approach
on our previous research in statistical learning approach to dynamic sampling (SLADS) [18], which has
proven to be useful in dynamic 2D scanning of materials using scanning electron microscopy and other
point-probe measurement methods.

We worked with ALERT to obtain data from previous task orders, and we also used simulated data to perform 
experiments. 

B.1. Research on Direct Sparse-View Reconstruction Using Long Short-Term Memory Processing of Stacked
Back-Projections

Over the past few years, sparse-view CT has captured the attention of the CT community since sparse-view 
data acquisition can drastically reduce scan time and dosage. However, in sparse-view applications, 
conventional CT reconstruction algorithms will suffer from severe streak artifacts and image distortion since 
projection data is undersampled. MBIR can solve sparse-view CT reconstruction problems. However, the 
high computational cost of MBIR makes it unsuitable for calculating reconstruction in real time. 

Also over the past five years, DL has emerged as a fundamentally new approach to image reconstruction. The 
two major advantages of deep neural networks (DNNs) are that they can be trained to produce high-quality 
reconstructions from sparse and noisy data and that they are much more computationally efficient than 
iterative reconstruction methods. 

We proposed stacked back-projection (SBP) as a general structure for direct tomographic reconstruction 
that preserves all the sinogram information, avoids the need for computationally intractable dense networks, 
and allows for the natural introduction of convolutional neural network (CNN) structures in reconstruction. 
We also proposed a DNN based on long short-term memory (LSTM), with SBP as an efficient computational 
structure that yields high quality reconstructions. In this approach, our model has a convolutional LSTM 
followed by a U-Net. Further, to avoid a high dependency of the output on the last view projection of SBP, we 
developed a rotational LSTM that can train two parallel LSTMs using different projections as the last view. 
Compared to CNN-based methods, our approach incorporates a convolutional LSTM that improves 
algorithmic convergence and leads to better reconstruction quality.  

We train our networks on simulated data and validate our approach on both simulated and real data. We 
demonstrate that the SBP-LSTM architecture produces higher quality images as compared to post-
processing of FBP images and SBP-CNN architecture. 
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B.1.a. Stacked Back-Projection

Figures 1 and 2 illustrate the procedure of the SBP generation. As shown in Figure 1, all the sinogram views 
acquired from a single 2D slice are first filtered by a ramp filter. Then, for each single-view projection, we 
back-project it as listed in the outer ring in Figure 1. 

Figure 1: Single-view back-projection generation. In this example, sinogram is projected from sixteen equispaced 
views [𝟎𝟎,𝛑𝛑].  

Figure 2 depicts a pipeline from sinogram to SBP. Sixteen single-view back-projections are stacked together 
following the order of the equispaced views [0,π]. 

Figure 2: SBP generation. In this example, sinogram is projected from sixteen equispaced views [𝟎𝟎,𝛑𝛑]. 
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B.1.b. Deep Neural Network Models

Since we want to demonstrate the effect of using SBP as input to the deep neural network, we first implement a 
baseline model using FBP as input. According to [1], many deep neural networks have been proposed to learn the 
artifacts of the image generated from the measurement by some analytic methods. For example, Wang et al. propose 
several different neural networks [2-6] to recover a normal dose CT image from a noisy low dose CT image. 

The architecture of our learning model is shown in Figures 3 and 4. We use both the FBP image (256 × 256 
× 1) and SBP image (256 × 256 × 16) as input to our CNN model to demonstrate the effect of using SBP. We 
base our CNN model on the U-Net [7] by adding three convolutional blocks before the original U-Net. 

Figure 3: FBP + U-Net. The first block consists of a 3 × 3 convolution layer (with 64 filter, stride = 1) and a rectified 
linear unit (ReLU) activation function. We do not use activation functions in the final block. The remaining blocks 
consist of a 3 × 3 convolution layer (with 64 filter, stride = 1), ReLU activation function, and batch normalization. 

Figure 4: SBP + U-Net. Other layers remain the same as in Figure 3. 

LSTM model for SBP: When using a CNN as above, we treat each single-view back projection as a channel, 
like the RGB channels in a color image, and stack them together in a manner by which the order of the channel 
does not affect the reconstruction. However, projections of a sinogram generated under a sorted angle 
sequence have order. Therefore, we introduce a sequential processing network to better handle the SBP data. 
This is reminiscent of Le et al. [8], who use LSTM to correlate adjacent views in 3D mesh segmentation. 

The architecture of our proposed model is shown in Figure 5. We treat multiple views as a temporal sequence. 
In practical training, we need to expand and rearrange the original SBP into a 4D tensor consisting of time, 
rows, columns, and channels. After rearrangement, the number of views of the corresponding sinogram is 
consistent with the dimensionality of time, while the dimensionality of channels is one.  
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Figure 5: SBP + LSTM + U-Net. The first three blocks are replaced by the convolutional LSTM layer (kernel size = 3, strides 
= 1, padding = ”same,” and number of output filters in convolution = 32). Other layers remain the same as in Figure 3. 

We base our recurrent layer on convolutional LSTM. Convolutional LSTM replaces a fully connected operation 
with a convolutional operation, which leads to a novel combination of LSTM and CNN. A traditional CNN-LSTM 
model uses CNN to extract features, followed by an LSTM and a dense layer, as in [8]. Our proposed model first 
uses the rearranged SBP tensor as input to the convolutional LSTM; the output is the hidden state output of the 
last sequence step, which is a 3D tensor shown in Figure 5. The output of the convolutional LSTM will plug into 
the U-Net. The convolutional LSTM can correlate adjacent views and can better separate low-noise projections 
from noisy projections. Also, the U-Net can further remove streak artifacts. 

Rotational stride: Since we output only the last sequence step of the convolutional LSTM, we need to 
introduce a half rotational stride to avoid a high dependency of the output on the last view projection. As shown 
in Figure 6, by using a rotational stride of π/2, we actually train two parallel convolutional LSTMs. Then we 
concatenate the last hidden states (N × N × 32) of two LSTMs as the final output (N × N × 64) of our LSTM. 

Figure 6: Half rotational stride convolutional LSTM. 
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Loss function: For reconstructing an X-ray CT image for security applications, the range from 0 to 2,000 
Hounsfield units (HU) (scaled so that air = 0 HU and water = 1,000 HU) is critical. Therefore, we used a 
modified MSE loss to train our models: 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 = ‖𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥�)‖2 

where, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
|𝑥𝑥|+2000

B.1.c. Experimental Results

To test our approach, we used 980 synthetic sinograms generated from the ALERT Task Order 4 (Advances 
in Automatic Target Recognition for CT-Based Object Detection Systems) CT dataset by Python as well as 200 
sinograms from the ALERT Task Order 3 (Research and Development of Reconstruction Advances in CT-
Based Object Detection Systems) CT dataset, using an Imatron Model C300 scanner X-ray CT system. 

Figure 7 together with Table 1 compare both qualitative and quantitative results of the image reconstruction 
algorithms using 16 view simulated data. Both root mean squared error (RMSE) and structural image 
similarity metric (SSIM) are used as quantitative measures of image quality. For Figure 7, a display range of 
0 to 2,000 HU is used. Notice that that proposed SBP+LSTM+U-Net algorithm produces the best overall 
results and reduces striking artifacts such as those highlighted in the red box. Perhaps surprisingly, 
SBP+LSTM+U-Net even performs better than the much more computationally expensive MBIR algorithm 
with a simple Q-GGMRF prior model. Also notice that for our example the introduction of CGAN training does 
not significantly improve the result relative to more a more standard MSE loss function.  

Figure 7: Results on a simulated image. Modified RMSE/SSIM. Display range is 0 to 2,000 HU. Both DL-based 
methods can successfully suppress most of the streak artifacts. However, FBP + U-Net fails to suppress the 
remaining streak artifacts shown in the red frame. SBP + LSTM + U-Net can sharpen the reconstruction image and 
recover important information from low-noise projections. 
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Model Training Loss RMSE SSIM 
FBP + U-Net MSE 0.0331 0.9028 
SBP + U-Net MSE 0.0321 0.9074 
FBP + U-Net CGAN 0.0339 0.8957 
SBP + U-Net CGAN 0.0320 0.9068 
SBP + LSTM + U-Net 
(unidirectional with 
rotational stride) 

MSE 

0.0303 0.9153 
MBIR N/A 0.0374 0.8686 

Table 1: Quantitative evaluation on simulated data. SBP + LSTM + U-NET has the best modified RMSE and SSIM 
metric among all the methods. 

Figure 8 together with Table 2 compare both qualitative and quantitative results of the image reconstruction 
algorithms using 16 view real data subsampled from a full set of views. Again, the RMSE and SSIM are used 
as metrics of image quality, but since this is real data ground truth is not available to use as a reference image. 
Therefore, we use the reconstruction form the full set of views as our reference, and this is done using and 
MBIR and FBP reference for fairness. Perhaps not surprisingly, the MBIR algorithm results in the best image 
quality when an MBIR reference image is used. However, when an FBP reference image is used, then 
SBP+LSTM+U-Net algorithm results in the best image quality. Also, visually, the SBP+LSTM+U-Net algorithm 
results in comparable image quality to MBIR, with less streaking and better overall sharpness, but perhaps 
more artifacts in some locations. So on the real data, the SBP+LSTM+U-Net algorithm results in comparible 
image quality to MBIR but with much lower computation. 
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Figure 8: Sparse-view reconstruction on real sinogram. Modified RMSE/SSIM compared with full-view MBIR. Display 
range is from 0 to 2,000 HU. The MBIR reconstruction on sparse-view sinogram has a more accurate result than our 
proposed method on real data. However, our proposed method still outperforms other deep models on real data. 

Model Training Loss 

RMSE  
(Relative to 

Full-View 
MBIR) 

SSIM 
(Relative to 

Full-View 
MBIR) 

RMSE  
(Relative to 

Full-View 
FBP) 

SSIM 
(Relative to 

Full-View 
FBP) 

FBP + U-Net MSE 0.0606 0.7695 0.0493 0.8110 

SBP + U-Net MSE 0.0613 0.7740 0.0501 0.8112 

FBP + U-Net CGAN 0.0609 0.7781 0.0493 0.8124 

SBP + U-Net CGAN 0.0605 0.7758 0.0502 0.8123 
SBP + LSTM + U-Net 
(unidirectional with rotational stride) MSE 0.0589 0.7870 0.0470 0.8242 

MBIR N/A 0.0505 0.8404 0.0514 0.7983 

Table 2: Quantitative evaluation on real data. Calculating the RMSE and SSIM between the sparse view 
reconstruction and a reference image computed using the full set of views and either MBIR or FBP. Notice that 
SBP+LSTM+U-Net and MBIR have the best overall image quality.  
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B.2. Source Code and Licensing for High-Performance Iterative CT Reconstruction

The parallel super-voxel iterative coordinate optimization (PSV-ICD) method [12] is a high-performance 
implementation of MBIR for multicore CPU systems. This approach has fast algorithmic convergence since it 
is based on the ICD method [9] and is roughly 187 times faster on a 20-core CPU system as standard serial 
ICD reconstruction on a single CPU core [12].  

Figure 9 illustrates how the PSV-ICD accelerates the computation MBIR by reorganizing the projection data 
and system-matrix entries for each super-voxel (SV, a group of spatially close voxels) into a compact 
contiguous memory layout called the SV-buffer. This approach has two major benefits. First, the data access 
for the voxel-wise ICD update in a given SV is faster due to sequential memory access and superior cache-
locality. Second, the computation of each voxel-wise ICD update can be accelerated using SIMD vector 
processing units. To efficiently utilize each CPU core, the update of multiple SVs that are spatially far apart is 
parallelized across CPU cores. 

Figure 9: Illustration of high-performance CT reconstruction using the parallel SV-ICD approach; (top) SV buffer 
formation and (bottom) parallelization of SV-ICD algorithm across CPU cores for reconstructing single slice. The 
projection data for each SV is reorganized into a more compact data structure called the SV-buffer that permits fast 
sequential memory access and high data-caching efficiency. Further, the ICD update of different SVs that are 
spatially far apart is parallelized across multiple CPU cores.  
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In collaboration with High Performance Imaging LLC (HPI), we publicly released an open-source version of 
the PSV-ICD algorithm suitable for use on a high-performance multicore compute node. The software, which 
is available on GitHub (https://github.com/HPImaging), is licensed under the BSD-3-Clause License.  

We also built an open-source Python package, svmbir, on GitHub (https://github.com/cabouman/svmbir) 
that makes the SV MBIR code easy to use and integrate into user software. Enhanced versions of the software 
suitable for CPU and GPU clusters are available from HPI for commercial licensing. 

B.3. Research on Distributed Iterative High-Resolution CT Reconstruction

Tomographic reconstruction algorithms can be roughly divided into two categories: analytical 
reconstruction methods and regularized iterative reconstruction methods, such as MBIR. MBIR methods 
have the advantage that they can improve reconstructed image quality particularly when projection data are 
sparse and/or the X-ray dosage is low. This is because MBIR integrates a model of both the sensor and object 
being imaged into the reconstruction process. However, the high computational cost of MBIR often makes it 
less suitable for solving large reconstruction problems in real time. 

We proposed a MACE algorithm for distributing both the computation and memory of MBIR reconstruction 
across a large number of parallel nodes [11, 16, 17]. In MACE, each node stores only a sparse subset of views 
and a small portion of the system matrix, and each parallel node performs a local sparse-view reconstruction, 
which—on repeated feedback from other nodes—converges to the global optimum.  

Our distributed approach can also incorporate advanced denoisers as priors to enhance reconstruction 
quality. In this case, we obtain a parallel solution to the serial framework of PnP priors [15, 18], which we 
call MACE-PnP. Further, a direct implementation of MACE is not practical since it involves repeated 
application of proximal operators that are themselves iterative. To make MACE practical, we introduced a 
partial-update method [11, 16] that eliminates nested iterations and proves that it converges to the same 
global solution.  

Finally, we validated our approach on a distributed memory system with real CT datasets taken from security 
and synchrotron imaging applications, respectively. We also demonstrate an implementation of our 
approach on a massive supercomputer that can perform large-scale 3D reconstruction in real time. 

B.3.a. MACE and MACE-PnP Algorithms

Figure 10 illustrates our two approaches to this distributed CT reconstruction problem. While both the 
approaches integrate multiple sparse-view reconstructions across a compute cluster into a high-quality 
reconstruction, they differ based on how the prior model is implemented. 

Figure 10 (top) depicts our basic MACE approach that utilizes conventional edge-preserving regularization 
as a prior model and converges to the maximum a posteriori (MAP) estimate. Figure 10 (bottom) shows our 
second approach called MACE-PnP which allows for distributed CT reconstruction using PnP priors. These 
PnP priors [15] substantially improve reconstructed image quality by implementing the prior model using a 
denoising algorithm based on methods such as BM3D [19] or deep residual CNNs [20]. We prove that MACE-
PnP provides a parallel algorithm for computing the standard serial PnP reconstruction of [15]. 
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Figure 10: Illustration of the MACE algorithm for distributing CT reconstruction across a parallel cluster of compute 
nodes. The MACE algorithm works by splitting data into view subsets and reconstructing them in parallel. The 
individual reconstructions are then merged in an iterative loop that results in (top) the MAP reconstruction in the 
case of conventional prior models or (bottom) standard PnP reconstruction in the case of advanced prior models. 
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B.3.b.   Mathematical Framework for MACE and MACE-PnP Algorithms

B.3.b.i. CT Reconstruction as a MAP Estimation Problem

To parallelize CT reconstruction, we first split the global MAP estimation problem into a sum of N auxiliary 
functions given by the following: 

Minimize (𝑥𝑥;𝛽𝛽) = ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥;𝛽𝛽)𝑁𝑁
𝑖𝑖=1  , 

where for each 𝑖𝑖, 𝑓𝑓𝑖𝑖(𝑥𝑥) represents a sparse-view reconstruction problem associated with the 𝑖𝑖𝑡𝑡ℎ view subset. 
More specifically, we define 

𝑓𝑓𝑖𝑖(𝑥𝑥;𝛽𝛽) = 1
2
‖𝑦𝑦𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑥𝑥‖Λ2 + 1

𝑁𝑁
ℎ(𝑥𝑥) , 

where 𝑦𝑦𝑖𝑖 is the projection data from the 𝑖𝑖𝑡𝑡ℎ view subset, 𝐴𝐴𝑖𝑖  is the projection operator for the 𝑖𝑖𝑡𝑡ℎ view subset, 
𝛽𝛽 ≥ 0 is the regularization level, and ℎ(𝑥𝑥) is the regularizing prior model. So, the MAP estimate x* is given by 
the minimization of the objective function 𝑓𝑓(𝑥𝑥;𝛽𝛽).  

B.3.b.ii. MACE Framework

We apply the MACE framework [10] to solve the above reconstruction problem. The key idea of the MACE 
framework is to integrate N different data models or agents, represented by 𝐹𝐹𝑖𝑖  , 𝑖𝑖 = 1,⋯ ,𝑁𝑁 and generate a 
single coherent fit x*. The MACE framework [10] specifies x* through the equilibrium conditions 

𝐹𝐹𝑖𝑖(𝑥𝑥∗ + 𝑢𝑢𝑖𝑖∗) = 𝑥𝑥∗, 𝑖𝑖 = 1, . . . ,𝑁𝑁 

∑ 𝑢𝑢𝑖𝑖∗ = 0𝑁𝑁
𝑖𝑖=1 . 

To solve the above CT MAP estimation problem using the MACE framework, we define each agent 
𝐹𝐹𝑖𝑖  , 𝑖𝑖 = 1,⋯ ,𝑁𝑁 as a proximal map associated with the sparse-view reconstruction problem fi given by 

𝐹𝐹𝑖𝑖(𝑣𝑣𝑖𝑖) = arg min
𝑥𝑥
�𝑓𝑓𝑖𝑖(𝑥𝑥) + 1

2𝜎𝜎𝜆𝜆
‖𝑥𝑥 − 𝑣𝑣𝑖𝑖‖2� , 

where 𝜎𝜎𝜆𝜆 > 0  is a parameter that can be selected arbitrarily, but that effects convergence speed of our 
algorithm. In this case, it can be shown that the MACE solution x* is exactly the MAP estimate. 

To represent the MACE conditions more compactly, we define the parallel-agent operator F and consensus 
operator G as 

𝐹𝐹(𝑣𝑣) = �
𝐹𝐹1(𝑣𝑣1)
⋮

𝐹𝐹𝑁𝑁(𝑣𝑣𝑁𝑁)
� , where 𝑣𝑣 = �

𝑣𝑣1
⋮
𝑣𝑣𝑁𝑁
� and 

𝐺𝐺(𝑣𝑣) = �
𝑣̅𝑣
⋮
𝑣̅𝑣
� , where 𝑣̅𝑣 = 1

𝑁𝑁
∑ 𝑣𝑣𝑖𝑖𝑁𝑁
𝑖𝑖=1  . 

Then, the MACE equilibrium conditions are compactly represented as 

𝐹𝐹(𝑣𝑣∗) = 𝐺𝐺(𝑣𝑣∗), 
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where 𝑣𝑣∗  is then the equilibrium solution to the MACE equations. Once 𝑣𝑣∗  is known, then the desired solution 
to our CT MAP estimation problem is given by the component-wise average of 𝑣𝑣∗ , 

𝑥𝑥∗ =
1
𝑁𝑁
�𝑣𝑣𝑖𝑖∗
𝑁𝑁

𝑖𝑖=1

 

It can be shown that the solution to the MACE equations is also the solution to the following fixed-point 
problem [10]: 

(2𝐹𝐹 − 𝐼𝐼)(2𝐺𝐺 − 𝐼𝐼)𝑤𝑤∗ = 𝑤𝑤∗ , 

where w* is defined through a change of coordinates given by 𝑣𝑣∗ = (2𝐺𝐺 − 𝐼𝐼)𝑤𝑤∗ . Consequently, the fixed-
point solution can be computed using the Mann iteration given by 

𝑤𝑤𝑘𝑘+1 = (1− 𝜌𝜌)𝑤𝑤𝑘𝑘 + 𝜌𝜌(2𝐹𝐹 − 𝐼𝐼)(2𝐺𝐺 − 𝐼𝐼)𝑤𝑤𝑘𝑘  

where again 𝜌𝜌  is a user-selectable parameter between 0 and 1 that affects convergence speed of the 
algorithm. Importantly, note that the above approach parallelizes CT reconstruction across N view subsets, 
since the proximal operators F1,…,FN in F that compute the individual sparse-view reconstructions can be 
applied independently. 

B.3.b.iii. MACE-PnP Framework

In this section, we generalize our approach to incorporate PnP priors implemented with advanced denoisers. 
Since we will be incorporating the prior as a denoiser, for this section we drop the prior terms in the 
equations of section B.3.b.i by setting β = 0. So let f(x) = f(x;β) denote the CT log likelihood function with  
β = 0 and no prior term, and let F(x) denote its corresponding proximal map. 

Then Buzzard et al. in [10] show that the PnP framework of Sreehari et al. in [15] can be specified by the 
following equilibrium conditions: 

 𝐹𝐹(𝑥𝑥∗ − 𝛼𝛼∗;𝜎𝜎) = 𝑥𝑥∗ 

𝐻𝐻(𝑥𝑥∗ + 𝛼𝛼∗) = 𝑥𝑥∗  

where H is the PnP denoiser used in place of a prior model. This framework supports a wide variety of 
denoisers including BM3D [19] and residual CNNs [20] that can be used to improve reconstruction quality 
as compared to conventional prior models [15, 18]. 

Let fi(x) = fi(x;β) denote the CT log likelihood function with β = 0 and no prior term, and let F(x) denote its 
corresponding proximal map. Then we can show that the below equilibrium conditions are exactly 
equivalent to that of the PnP framework [16].  

𝐹𝐹𝑖𝑖(𝑥𝑥∗ + 𝑢𝑢𝑖𝑖∗;𝜎𝜎) = 𝑥𝑥∗, 𝑖𝑖 = 1, . . . ,𝑁𝑁 

𝐻𝐻(𝑥𝑥∗ + 𝛼𝛼∗) = 𝑥𝑥∗  

𝛼𝛼∗ +∑ 𝑢𝑢𝑖𝑖∗ = 0𝑁𝑁
𝑖𝑖=1 . 
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Once again, we formulate a fixed-point method to solve the above problem. One specific way is to use an 
approach similar to the one in section B.3.b.i, where all agents are applied in parallel. However, we take a 
slightly different approach in which the denoising is applied in series rather than in parallel. To do so, we 
define the parallel-operator F and consensus operator GH as 

𝐹𝐹(𝑣𝑣) = �
𝐹𝐹1�𝑣𝑣1 ;  √𝑁𝑁𝜎𝜎�

⋮
𝐹𝐹𝑁𝑁�𝑣𝑣𝑁𝑁; √𝑁𝑁𝜎𝜎�

� , where 𝑣𝑣 = �
𝑣𝑣1
⋮
𝑣𝑣𝑁𝑁
� and 

𝐺𝐺𝐻𝐻(𝑣𝑣) = �
𝐻𝐻𝑣̅𝑣
⋮
𝐻𝐻𝑣̅𝑣

� , where 𝑣̅𝑣 = 1
𝑁𝑁
∑ 𝑣𝑣𝑖𝑖𝑁𝑁
𝑖𝑖=1  . 

Then we show that x* in the above equilibrium conditions can be computed by finding the fixed-point of map 
TH defined by 𝑇𝑇𝐻𝐻 = (2𝐹𝐹 − 𝐼𝐼)(2𝐺𝐺𝐻𝐻 − 1) [16]. More specifically, to compute x* we first find w*, the fixed-point 
of TH by using the Mann iteration 

𝑤𝑤𝑘𝑘+1 = (1 − 𝜌𝜌)𝑤𝑤𝑘𝑘 + 𝜌𝜌𝑇𝑇𝐻𝐻𝑤𝑤𝑘𝑘 , 

where 0<ρ<1, and then applying the denoiser H to the component-wise average of w*. Note that this method 
is parallelizable across N view subsets, since the parallel operator F typically dominates the computation in 
comparison with consensus operator GH.  

B.3.b.iv. Partial-Update Method for Speeding Up MACE and MACE-PnP

A direct application of the MACE and MACE-PnP algorithms is not practical, since the proximal operators 
Fi = 1,…,N that are evaluated in each Mann iteration require iterative optimization on their own. This results 
in nested loops of optimization that slow down the convergence speed. 

To overcome this issue, we proposed a partial-update method that replaces the proximal operator with fast 
noniterative updates. In [16] we show that this method significantly speeds up the MACE and MACE-PnP 
algorithms without sacrificing convergence. We refer to this modified version of MACE with partial updates 
as partial-update MACE. 

B.3.c. Experimental Results

We compare the image quality and convergence of our distributed MACE approach against a standard single-
node reconstruction method. The single-node method is conventional ICD reconstruction from all views on 
a single node [9]. In the MACE approach, the views are distributed across multiple nodes, and we compute 
each partial update using one pass of ICD optimization. 

To measure algorithmic convergence, we specify computation in units called equits. For the case of the 
conventional serial algorithm, we define one equit to be the computation associated with the update of all 
the pixels within the region of interest using the entire set of sinogram views. Since this definition accounts 
for the number of views being processed by the node, note that on a distributed implementation, one equit 
is equivalent to having each node perform one full ICD iteration using its subset of views. 

Figure 11 (left) shows the distributed MACE reconstruction using N = 16 nodes for a single slice of the 
ceramic-composite dataset acquired by the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley 
National Labs (LBNL). For this dataset, the CT measurements per slice consist of 2,560 sinogram views × 
1,024 detector channels, and our reconstruction size is 512 × 512 voxels. From Figure 11 (middle) and 
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(right), we notice that MACE reconstruction with N = 16 nodes has quality equivalent to the single-node 
reconstruction, even though each node utilizes <7% of the sinogram views for its local reconstruction. 

Figure 11: Image quality comparison using the LBNL ceramic composite dataset: (left) MACE reconstruction method 
with N = 16 nodes; (middle) close-up of the MACE reconstruction method with N = 16 nodes; (right) close-up of 
single-node reconstruction method. Notice that MACE produces image quality equivalent to the single-node 
method. 

Figure 12(a) shows the distributed MACE-PnP reconstruction using N = 16 nodes and CNN as a prior model 
for a single slice of the ALERT Task Order 3 baggage scan. For this dataset, the CT measurements per slice 
consist of 720 sinogram views × 1,024 detector-channels, and our reconstruction size is 512 × 512 pixels. 
For this experiment, our CNN prior is based on the deep res-net architecture of [20] and was trained using 
natural images. From Figure 12 (right) we notice that in comparison with conventional Q-GGMRF prior [13, 
14], the CNN prior improves quality by reducing streaking artifacts, which can potentially enable better 
segmentation. 

Figure 12: (left) MACE-PnP reconstruction with CNN prior and N = 16 nodes for the ALERT Task Order 3 baggage 
scan; (right) comparison of CNN prior versus Q-GGMRF prior. Notice that CNN prior reduces streaking artifacts in 
comparison to conventional edge-preserving regularization.  
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Figure 13 (left) shows that in the case of MACE with conventional Q-GGMRF prior, the number of equits 
required for convergence increases with the number of nodes, N, and consequently, the speedup is less than 
linear. However, from Figure 13 (right) we notice that in the case of MACE with CNN prior (MACE-PnP), the 
number of equits required for convergence does not change significantly from N = 2 to 8, and it is in fact less 
than that required by the serial approach when N≤8. Consequently, MACE with CNN prior provides a roughly 
linear speedup and has better parallel efficiency. Table 3 summarizes the relative speedup results for these 
experiments. 

Figure 13: MACE algorithmic convergence using (left) Q-GGMRF prior and (right) res-net CNN prior (MACE-PnP) as a 
function of the number of nodes N for ALERT Task Order 3 baggage scan. In comparison with the Q-GGMRF prior, 
the CNN prior provides faster convergence and significantly better speedup over the serial reconstruction method. 

Prior Model N = 1 N = 2 N = 4 N = 8 N = 16 
Q-GGMRF 1.00 1.80 3.27 6.00 10.29 
BM3D 1.00 2.14 4.29 8.57 16.00 

Table 3: MACE algorithmic speedup as a function of number of nodes N, for the LBNL ceramic composite dataset. 
Note that while MACE speedup is less than linear in the case of the Q-GGMRF prior, it is roughly linear in the case of 
the BM3D prior.  

Table 4 illustrates the use of our distributed MACE approach for large-scale reconstruction on the massive 
National Energy Research Scientific Computing Center (NERSC) supercomputer in real time and analyzes its 
computational performance. For this experiment, we performed high-resolution reconstruction for a 3D 
ceramic-composite dataset acquired by the ALS synchrotron at LBNL. The CT measurements consist of 2,560 
sinogram views × 1,024 detector channels × 1,200 detector rows, and our reconstruction size is 1280 × 1280 
× 1,200 voxels. Each node in the cluster reconstructs 8 slices and utilizes the high-performance SV-ICD 
method [12] for efficient parallelization across multiple CPU cores. For this dataset, the conventional 
reconstruction method that does not distribute memory is not practical, since the overall CT system model 
is very large. From Table 4, we notice that our distributed MACE approach can achieve high-quality 
reconstructions in real time by reducing both the memory and computation (per iteration) on each node by 
a factor of N, where N denotes the number of view subsets. While the speedup of MACE increases with N, we 
notice that after N = 4, the parallel efficiency drops and the speedup based on real machine-time is less than 
the algorithmic speedup based on equits. 
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#View  
Subsets (N) #Nodes #Equits 

#Time 
 (seconds) 

Algorithmic  
Speedup 

Machine-Time  
Speedup 

1 150 – – – – 

2 300 23.91 275 2.00 2.00 

4 600 26.67 154 3.58 3.57 

8 1200 34.03 121 5.62 4.55 

Table 4: High-resolution reconstruction of a large 3D synchrotron dataset using the MACE approach on the NERSC 
supercomputer. MACE enables reconstruction of large datasets in real time by reducing both the computation and 
memory footprint per compute node by a factor of N, the number of view subsets. Note that while the speedup 
increases with N, the parallel efficiency drops after N = 4. 

B.4. Major Contributions

Year 1 (2013–2014) outcomes: 

• Developed MBIR algorithm for application in sparse view CT.

• Developed multislice helical scan geometry CT code for MBIR reconstruction.

• Developed an “implicit prior” method for image reconstruction. This method was the conceptual
precursor to the PnP methods that were later developed and have come to be widely used in the
computational imaging community.

• Published the first paper on PnP, which has 284 citations in Google Scholar as of August 25, 2020.

• Implemented 2D MBIR on reformatted Imatron data.

Year 2 (2014–2015) outcomes:

• Developed and implemented metal artifact reduction methods for MBIR reconstruction algorithm for
application in sparse view CT.

• Implemented MBIR on Morpho and ALERT Task Order 3 data to demonstrate IQ improvements and
improved Pd/Pfa (probability of detection/probability of false alarm) performance for baggage scanning
data.

• Completed Secure Sensitive Information (SSI) report on improved performance of MBIR for baggage
scanning applications.

• Developed novel segmentation-based beam hardening correction algorithm for MBIR. Resulted in P. Jin,
C. A Bouman, and K. D Sauer, Trans. Computation Imaging, 2015, with 146 citations in Google Scholar as
of August 25, 2020.

Year 3 (2015–2016) outcomes: 

• Developed novel algorithm for joint segmentation and reconstruction using MBIR that won a best paper
award from the IEEE International Conference on Acoustics, Speech and Signal Processing.

• Developed novel CT automatic target recognition (ATR) algorithm based on segmentation and
classification method that was demonstrated in ALERT Task Order 4 competition.

• Invented SV MBIR reconstruction algorithm that has proven to be ~100‒2,000 times faster than
conventional MBIR and scalable to large-scale supercomputers. The SV-MBIR algorithm resulted in being
a finalist for the Gorden Bell prize in 2017. It also was the basis for the formation of a small business,
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High Performance Imaging, which currently has three ongoing projects with the Air Force and Air Force 
contractors as of July 1, 2020.  

Year 4 (2016–2017) outcomes: 

• Did initial research on MACE that is a follow-up to the PnP methods. This was used by others, including
Professor Karl, for application in sparse-view CT reconstruction using DL.

• Implemented 3D SV algorithm on a large-scale supercomputer.

Year 5 (2017–2018) outcomes:

• Used the MACE algorithm to implement a highly parallel reconstruction algorithm for very large CT
reconstruction on large-scale supercomputers.

• Demonstrated large-scale CT reconstruction on the NERSC supercomputer using MACE and SV-MBIR
technologies.

• Created SBP architecture for direct reconstruction of sparse CT data using DNNs.

Year 6 (2018–2019) outcomes:

• Created SBP-LSTM algorithm for improved 2D image reconstruction quality.

• Developed partial-update PnP methods for large-scale parallel 3D image reconstruction.

Year 7 (2019–2020) outcomes:

• Extended the SBP-LSTM algorithm to 3D cone-beam geometry for fast and accurate CT image
reconstruction.

• Published a TCI journal paper on large-scale parallel implementations of SV, MACE algorithms, with PnP
priors.

B.5. Milestones

Our Year 7 activities focused on studying the potential of the methods described above to solve problems 
faced by TSA in baggage, checkpoint, and cargo scanning. In particular, we developed a novel algorithm for 
direct reconstruction from sinogram data using DNNs that is based on the SBP together with an LSTM 
architecture. These specific milestones were achieved: 

• September 30, 2019—Performed preliminary study of methods and evaluated the potential of these
methods for addressing TSA problems in cargo scanning. Identified mechanisms for obtaining simulated
and real cargo-scanning data.

• December 31, 2019—Implemented ML-based reconstruction algorithms for real and simulated cargo-
scanning data sets.

• March 31, 2019—Tested and optimized ML-based reconstruction algorithms using real and simulated
cargo-scanning data sets. Assessed weaknesses and strengths. Formulated plan for optimizing
performance in terms of computation speed and image quality.

• June 30, 2019—Evaluated image quality and computation speed of ML-based reconstruction algorithms 
using standard methods of image quality, such as normalized root mean squared error for simulated
data, and artifact measures such as contrast ratio for real data sets.

In addition, we achieved the following milestone in parallel with high-speed MBIR reconstruction. 
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• June 30, 2019—Developed and implemented a novel algorithm based on the MACE framework for
parallel reconstruction of large CT images using both traditional MBIR and PnP priors.

B.6 Final Results at Project Completion (Year 7)

Major project outcomes: 

• Demonstrated the first practical methods for sparse view reconstruction. In [21] and [22], we had the
first demonstrations that sparse view reconstruction was possible for practical transportation security
problems such as cargo scanners. Practical sparse view reconstruction is of critical values since for many 
problems, including carry-on baggage and cargo, it may not be possible or practical to obtain a full set of
views.

• Demonstrated the value of MBIR in reducing reconstruction artifacts that contribute to increased false
alarm and missed detection rates [23].

• Introduced novel methods for metal artifact reduction in MBIR reconstruction [24,25]. These
publications, done in collaboration with researchers at what was then Morpho Detection, demonstrate
that MBIR can be used to reduce metal artifacts that cause false alarms and miss detections in baggage
scanning.

• Developed the advanced prior methods for reconstruction that are generally known as plug-and-play
(PnP) methods. These methods can dramatically improve reconstructed image quality by allowing the
integration of physics models with AI and deep-learning–based prior models [18,15].

• Created a novel high-performance MBIR algorithm, known as super-voxel MBIR (SV-MBIR), that was
demonstrated to speed reconstruction by well over a factor of 400 on CPU, GPU, and large-scale cluster
computers [12,26,17,11,16]. The multicore CPU version of this algorithm is now available as open-source
Python code and makes fast MBIR reconstruction practically accessible to a wide range of users.

• Created novel computationally efficient architecture known as stacked-back projection (SBP) for direct
reconstruction of parallel and cone-beam data using deep neural networks [27, 28]. These emerging
methods have the potential to achieve reconstruction quality that is near MBIR with a fraction of the
computation time.

• Formed a startup company, High-Performance Imaging LLC (HPI), to translate state-of-the-art
innovations in CT scanning technology to the problems of transportation security. It currently has a
number of active research programs with the Air Force and is also working with US Department of
Energy (DOE) researchers to translate the innovations of the ALERT research to important applications
in manufacturing, material science, and sensing.

III. RELEVANCE AND TRANSITION

A. Relevance of Research to the DHS Enterprise

Metrics: 

• Speed of computation—In the publications [12, 26, 17, 11, 16] we demonstrated reconstruction
speedups of the svmbir algorithm relative to conventional parallel state-of-the-art implementations of
MBIR of approximately 400 times. This relative speedup was achieved on multicore CPU
implementations, multi-GPU implementations, and large-scale clusters such as the DOE’s NERSC
supercomputer.

ALERT 
Phase 2 Year 7 Annual Report 

Appendix A: Project Reports 
Thrust R4: Video Analytics & Signature Analysis 

Project R4-B.1



• Image quality—Using MBIR with advanced priors and also using direct SBP reconstruction using deep
neural networks we were able to demonstrate dramatic reconduction image artifacts for sparse view
reconstruction, substantial image quality improvement using metal artifact reduction, and improved
segmentation and object detection using integrated reconstruction/segmentation/classification
methods.

B. Status of Transition at Project End

In collaboration with HPI, we publicly released an open-source version of the PSV-ICD algorithm suitable for 
use on a high-performance multicore compute node. The software, which is available on GitHub 
(https://github.com/HPImaging), is licensed under the BSD-3-Clause License. We are also building an open-
source Python package, svmbir, on GitHub (https://github.com/cabouman/svmbir) that makes the SV MBIR 
code easy to use and integrate into user software. Enhanced versions of the software suitable for CPU and 
GPU clusters are available from HPI for commercial licensing. 

In addition, we are planning on making open-source Python packages available for the SBP-LSTM 
reconstruction algorithm discussed. Our goal is to develop a version of the SBP-LSTM algorithm that can 
work for both parallel and cone beam geometry with arbitrary uniform view angle sampling and on-the-fly 
LSTM processing. With these innovations the package can be used on a wide variety of practical parallel and 
cone-beam tomography data sets without retraining. 

C. Transition Pathway and Future Opportunities

The software and algorithms described in this report and developed over the past seven years are being used 
to engage with a wide variety of government and commercial organizations including: 

• Eli Lilly Corporation: We are using the cone-beam and parallel 3D and 4D MBIR algorithms to image
medical devices, such as injectors, in collaboration with Eli Lilly. This collaboration also involves
Canadian Light Source and Kinetic Vision.

• Los Alamos National Laboratory (LANL): We are using the software and algorithms developed in this
effort as the core of our collaborations with LANL in the areas of hyperspectral neutron imaging, imaging 
of hydrodynamic events, and ptychographic imaging.

• Argonne National Laboratory’s Advanced Photon Source (APS): We are using the parallel-beam geometry 
SV MBIR code as the basis of our collaborations with APS on topics such as 4D reconstruction form sparse 
view sampling of dynamic events.

D. Customer Connections

1. Morpho Detection: 2011–2016

• Collaborated with Samit K Basu, Todd Gable, Walter Garms, Matthew Merzbacher, and Sondre Skatter on:

• Astrophysics project for cargo scanner
• Study of iterative reconstruction for checked baggage scanner
• X-ray diffraction scanner for checked baggage scanner

2. Astrophysics: 2011–2013

• Simon Bedford and Francois Zayek

• Astrophysics project for cargo scanner
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3. AS&E: 2017-2018

• Aaron Couture and Jonathan Everett

• Advanced X-ray diffraction scanner reconstruction done jointly with Tufts University.

IV. PROJECT ACCOMPLISHMENTS AND DOCUMENTATION

A. Peer Reviewed Journal Articles

Pending – 

1. Sridhar, V., Wang, X., Buzzard, G.T., & Bouman, C.A., “Distributed Iterative CT Reconstruction Using
Multi-Agent Consensus Equilibrium.” IEEE Transactions on Computational Imaging, accepted 2020.

B. Peer Reviewed Conference Proceedings

1. Wang, X., Sridhar, V., Ronaghi, Z., Thomas, R., Deslippe, J., Parkinson, D., Buzzard, G.T., Midkiff, S.P.,
Bouman, C.A., & Warfield, S.K. “Consensus Equilibrium Method for Super-Resolution and Extreme-
Scale CT Iterative Reconstruction.” SC 19: The International Conference for High Performance
Computing, Networking, Storage, and Analysis, Denver, CO. 17–22 November 2019, pp. 86-1 to 86-13.

C. Other Presentations

1. Webinars

a. “Plug and Play: A General Approach to AI and Sensor Model Fusion.” Best Paper Prize, keynote
lecture, 2020 SIAM Imaging Sciences Conference.
https://www.youtube.com/watch?v=GjCmxTqAJDo&feature=youtu.be.

D. Student Theses or Dissertations Produced from This Project

1. Sridhar, V., “Parallel Computational Methods for Model-Based Tomographic Reconstruction and
Coherent Imaging.” PhD, School of Electrical and Computer Engineering, Purdue University, May
2020.

E. Algorithms

See Section III.
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