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R4-A.1: Dynamics-Based Video Analytics

I. PARTICIPANTS INVOLVED FROM JULY 1, 2019 TO JUNE 30, 2020
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Institution
Octavia Camps Co-PI Northeastern University o.camps@northeastern.edu
Mario Sznaier Co-PI Northeastern University m.sznaier@northeastern.edu

Graduate, Undergraduate and REU Students

Degree Pursued Institution Month/Year of Graduation

Sadjad Esfeden Asghari | PhD Northeastern University 12/2021

Wengian Liu PhD Northeastern University 5/2021

Dan Luo PhD Northeastern University 12/2023

Bengizu Ozbay PhD Northeastern University 12/2021

Dong Yin PhD Northeastern University 12/2022

Yuexi Zhang PhD Northeastern University 12/2021

Armand Comas MS, PhD Northeastern University 6/2019 (MS), 6/2024 (PhD)
Timothy Rupprecht MS Northeastern University 8/2020

Can Uner MS Northeastern University 12/2019

II. PROJECT DESCRIPTION

A. Project Overview

Video-based methods can provide advanced warning of terrorist activities and threats. In addition, they
can assist and substantially enhance localized, complementary sensors that are more restricted in range,
such as radar, infrared, and chemical detectors. Moreover, since the supporting hardware is relatively
inexpensive and largely already deployed (stationary and mobile networked cameras, including camera
cell phones, capable of broadcasting and sharing live video feeds), the additional investment required is
minimal.

Arguably, a critical impediment to fully realizing this potential was the absence of reliable technology for
robust, real-time interpretation of the abundant, multi-camera video data. The dynamic and stochastic
nature of this data, compounded with its high dimensionality, and the difficulty to characterize distinguishing
features of benign versus dangerous behaviors, makes automatic threat detection extremely challenging.
Indeed, state-of-the-art turnkey software relies heavily on human operators, which in turn severely limits
the scope of its use.

This research effort was motivated by an emerging opportunity to address these challenges, exploiting
advances at the confluence of robust dynamical systems, computer vision, and machine learning. A
fundamental feature and key advantage of the envisioned methods is the encapsulation of metadata on
targeted behavior using dynamics-based and statistical-based invariants. Drawing on solid theoretical
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foundations, robust system identification and adaptation methods, along with model (in)validation and
artificial intelligence tools, we designed algorithms for quantifiable characterization of threats and
benign behaviors, provable uncertainty bounds, and alternatives for viable explanations of observed
activities.

Specifically, this research sought to predict and isolate threats in crowded public spaces—such as sports
arenas, airports, bus terminals—and vulnerable urban spaces, as illustrated in Figure 1.

Figure 1: This research sought to predict and isolate threats in crowded public spaces, such as sport arenas and
transport terminals, and vulnerable urban spaces.

Toward this goal, we developed algorithms to:

e answer the “who, what, where, and why” questions from video data;
e identify security breaches at portals;

e track movements across distributed camera networks;

e detect suspicious, potentially threatening activities; and

o flag objects left behind.

The resulting systems integrate real-time data from multiple sources over dynamic networks, covering large
areas, extracting meaningful behavioral information on a large number of individuals and objects, and
striking a difficult compromise between the inherent conservatism demanded from threat detection and
the need to avoid a high false-alarm ratio, which heightens vulnerability by straining resources.

The impact of successful video analytics such as the ones developed in this project are very relevant to the
Department of Homeland Security (DHS). Our goal was to provide tools to automatically process vast
amounts of visual data, most of which is not relevant, and to localize, both in space and time, critical
actionable information that is needed to ensure safety in large public spaces.

B. State of the Art and Technical Approach

Recent advances in the accuracy and efficiency of object detectors [1, 2], particularly pedestrian detectors,
have inspired and fueled multi-target tracking approaches for detection. These techniques proceed by
detecting the targets frame by frame, using a high quality object detector, and then associating these
detections by using online or offline trackers [3-5]. Often, these associations are based on appearance and
location similarity; however, these approaches fail when the appearance of the targets is discriminative and
the targets display simple motion patterns. While there are trackers that rely less on appearance [6-10],
they often require the tuning of a large number of parameters and the expertise to adapt the algorithms to
these more challenging scenarios. Alternatively, Ding et al. [11] showed that it is possible to use dynamics
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to compare tracks and disambiguate between targets without assuming a motion model a priori; however,
the computational and memory complexity of this approach has limited its application to short trajectories
of a few targets.

Multiple cameras are used to cover wide areas and provide different viewpoints of targets. Maintaining
consistent identity labels across cameras is a difficult problem since the appearance of the targets can be
quite different when seen from different angles. Previous approaches to this problem include matching
features such as color and apparent height [12-14, 15], using 3D information from camera calibration [13,
16-20], using the epipolar constraint [21-23], modeling the relationship between the appearance of a
target in different views through a linear time invariant system [24], or computing homographies between
views [25-29]. When the cameras do not have overlapping fields of view, targets must be re-identified (re-
IDed) across cameras. A good overview of existing re-ID methods can be found in [30-34] and the
references therein.

The three most important aspects in re-ID are the features used, the matching procedure, and the
performance evaluation. Most re-ID approaches use appearance-based features that are viewpoint quasi-
invariant [35-40], such as color and texture descriptors; however, the number of features used varies
greatly across approaches, making it difficult to compare their impact on performance. Using standard
metrics such as Euclidean distance to match images based on these types of features results in poor
performance due to the large variations in pose, illumination, and limited training data. Thus, recent
approaches [34, 41-44] design classifiers to learn specialized metrics that enforce features from the same
individual to be closer than features from different individuals. Yet, state-of-the-art performance remains
low, slightly above 30% for the best match. Performance is often reported on standard datasets, and while
they are challenging, they bring in different biases. Moreover, the number of datasets and the experimental
evaluation protocols used also vary greatly across approaches, making it difficult to compare them.

Video frame prediction is an active research topic [45-54]. Most approaches use convolutional networks,
such as 3D convolutional networks [55] or generative adversarial networks (GANs) [56] to synthetize
future frames. Many techniques work directly on pixel values [52, 57-60] while others [61, 62] use/predict
optical flow as well. However, the performance of convolutional schemes is limited by short-range
dependencies, and they often experience blurriness in the predicted frames.

Human pose estimation [63-67], which seeks to estimate the locations of human body joints, has many
practical applications such as smart video surveillance[68, 69], human computer interaction [70], and
virtual reality (VR) / augmented reality (AR) [71]. The most general pose estimation pipeline extracts
features from the input and then uses a classification/regression model to predict the location of the joints.
Recently, Bertasius et al. [72] introduced a Pose Warper capable of using a few manually annotated frames
to propagate pose information across the complete video. However, it relies on annotations of every k¢
frame, and thus it fails to fully exploit the dynamic correlation between them.

Dynamics, and more precisely dynamic invariants, can be used to extract critical information from data
streams. Robust identification of piecewise affine dynamic systems has been the subject of recent intensive
research, leading to a number of techniques meant to identify subsystem dynamics and switching surfaces
[73]. A common feature is the computational complexity entailed in dealing with noisy measurements. In
this case, algebraic procedures [74] lead to nonconvex optimization problems, while optimization methods
lead to mixed integer/linear programming [75]. Similarly, methods relying on probabilistic priors [76]
also lead to computationally complex combinatorial problems. An alternative approach is provided by
clustering-based methods [77, 78]. Since these methods rely on local identification, they require “fair
sampling” of each cluster, which places constraints on the data that can be used. More recently, the PIs of
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this project have developed new sparsification-based techniques for identification of switched affine models
that allow for several types of noise [79-81].

Finding dynamic invariants from corrupted data often requires the ability to solve optimization problems.
Semidefinite programs seek to minimize a linear function subject to affine matrix equality and positive
semidefinite constraints. These problems are convex (albeit nonsmooth) and thus tractable. Indeed, recent
research efforts have led to numerous algorithms (for instance interior point algorithms) with polynomial
complexity; excellent surveys are given in [82] and [83]. Of particular interest to this project are
semidefinite programs resulting from the relaxation of constrained rank minimization problems [84, 85]. It
has been recently shown [86] that in these cases, gradient-based methods outperform interior point ones.
Polynomial optimization problems are highly nonconvex; however, one can find convex liftings leading to
standard semidefinite programs. Two (related) approaches are usually used: the “sums of squares”
approach [87], which provides convex certificates for positivity of a polynomial over a semi-algebraic set,
and its dual approach, referred to as the “moments” approach [88]. Here, sufficient and asymptotically
necessary conditions for a sequence to be a moment sequence of some Borel measure are used to convexify
the problem [89].

C. Major Contributions
C.1.Year7

C.1.a. Dynamics-Based Video Prediction

Humans and animals rely on making accurate predictions in order to survive in a dynamic world, as
illustrated in Figure 2. Accurate predictions of the location of objects in the environment and their motion
is of vital importance for autonomous navigation, estimating human intention, and controlling robots.
Motivated by this need, there has been significant interest in the task of video prediction, where the goal is
to synthesize future frames from previous ones.

Figure 2: Good timing is everything. In order to survive as they move in a dynamic world, humans and animals
rely on having accurate predictions of where things are going to be.

During Year 6, we introduced a novel architecture, DYAN, to predict future frames from a given short video
clip of a scene [90]. DYAN uses a dictionary made of a set of dynamics-based atoms to identify a dynamic
model for the scene optical flow, which is used to generate future frames. This approach produces high-
quality, realistic frames, but when looked at carefully, one can observe that the predictions exhibit
significant lagging when compared against the ground-truth frames. We observed that one cause for this
lag is that DYAN uses a Eulerian point of view: it makes predictions at a pixel location based on the
previous values at this same location. This can lead to incorrect predictions when objects move in the scene
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and partially occlude each other or the background. To address this shortcoming, in Year 6 we
preprocessed the input flows using a recursive warping. The modified architecture, W-DYAN, tries to
approximate a Lagrangian point of view, where predictions are made by following points in the 3D scene,
using the optical flow as a surrogate for tracking.

In Year 7, we further improved the DYAN and W-DYAN architectures by introducing a new module to
reduce prediction lag caused by abrupt changes of input dynamics and to allow the networks to process
arbitrary long sequences.

Abrupt changes in dynamics happen at occlusion boundaries (Eulerian point of view) and when objects
change their motion patterns (Eulerian and Lagrangian points of view). To detect these changes, the
proposed module uses a recursive Kalman filter on the latent dynamic encoding of the input data. Since the
filter is recursive, it allows the network to process the data as it becomes available in an online fashion.
Given a new frame, the filter updates its generative model and the error covariance of its predictions. The
filter compares the new measurement with its prediction from previous data and determines if it is within
the current estimated error covariance. If it does, the new measurement is used to refine the current model
and covariance. If it doesn’t, a dynamic change is detected, and a new model is initialized. A diagram of the
new architecture, K-DYAN (KW-DYAN), combining this module with DYAN (W-DYAN) is shown in Figure 3.
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Figure 3: KW-DYAN's architecture. The latent space is filtered to estimate the error covariance, which is used by
gate G to detect changes in the input dynamics, decide when to forget old inputs, and reset the system
identification. The optional (dashed boundary) warping module at the input aligns the input optical flows to
reduce the number of changes in dynamics in the input. All recurrent connections are shown in orange.

Figure 4 shows a qualitative example illustrating the benefits of using Kalman filtering with DYAN (K-
DYAN) and warped WDYAN (KW-DYAN). As the figure shows, the module is able to significantly reduce the
lag while still producing sharp images.
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PredNet DYAN K-DYAN W-DYAN KW-DYAN

Figure 4: Qualitative example predicting the fifth future frame for the sequence set10V011 from the Caltech
dataset. Top row shows the ground truth and predicted frames. Bottom row shows details inside the red box.
Circled in red: incorrect position of the front tire and orientation of the window frame of the car. Green arrows:
sharper roof line, correct orientation of the window frame.

We evaluated KW-DYAN and its variants and compared them against the state-of-the-art in Table 1 and
Table 2, using the Caltech and UCF101 datasets, respectively. For next frame prediction, the networks
predict the next optical flow and warp the last given frame. Comparisons were done with commonly used
numerical measurements—mean peak-signal-to-noise ratio (PSNR) [58], mean square error (MSE), and
structural similarity index measure (SSIM) [91]—to evaluate performance at the pixel level. Additionally,
we report learned perceptual image patch similarity (LPIPS) distance [92], since it has been shown to be a
good perceptual metric, and mean of the maximum optical flow (MMF) metric, proposed by us, to measure
prediction lag. For the Human 3.6 M dataset, we evaluated long-term prediction performance using the
mean of Euler angle error. Quantitatively, the higher PSNR/SSIM and the lower the MSE/LPIPS/MMF, the
better the performance. As seen in the tables, the new architectures decreased lagging while still
performing as good or better in the other metrics.

Method Parameters MSEx10° SSIM LPIPSx102 MMF
CopyLast - 22 0.91 1.98 2.82
BeyondMSE [58] | 8.9 million 3.26 088 | - -
PredNet [93] 6.9 million - 0.91 747 -
ContextVP [49] | 8.6 million 1.94 092 | 6.03 -
DualMoGan [94] | 11.3 million | 2.41 089 | - -
SDCNet [62] - 1.62 092 | - -
CtrlGen [95] - - 090 | 638 -
FGVP [96] - - 092 | 5.04 -
DYAN 80 0.87 095 |22 1.93
K-DYAN 82 0.69 0.96 | 2.1 1.75
W-DYAN 80 0.70 096 |23 1.62
KW-DYAN 82 0.74 0.95 1.8 1.55

Table 1: Quantitative results for predictions on Caltech dataset, compared to best available open source methods.
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Method Parameters PSNR SSIM LPIPS x 1072 MMF

CopyLast - 28.6 0.89 | 3.8 6.25

BeyondMSE[58] | 8.9 million 30.11 088 | - -

ContextVP[49] | 8.6 million 34.9 092 | - -

DVF[61] 8.9 million 32.86 093 | - -

DYAN 80 34.26 095 | 3.8 5.59

K-DYAN 82 34.90 096 | 4.1 4,95

W-DYAN 80 32.07 0.97 | 44 5.75

KW-DYAN 82 33.59 095 | 41 5.87

Table 2: Quantitative results for predictions on UCF101 dataset, compared to best available open source
methods. Red indicates the best scores.

C.1.b. Efficient Human Pose Estimation

In [97] we proposed an efficient pose estimation pipeline based on two observations: all frames are not
equally informative, and the dynamics of the body joints can be modeled using simple dynamics. The new
pipeline, shown in Figure 5, uses a light-weighted key frame proposal network (K-FPN) to select a small
number of frames to apply a pose estimation model. One of the main contributions of our approach is a new
loss function based on the recovery error in the latent feature space for unsupervised training of this
network. The second module of the pipeline is an efficient human pose interpolation module (HPIM), which
uses a dynamics-based dictionary to obtain the pose in the remaining frames.

Key frames

Y Video
S % Human Pose

indicator

¥

Key Frame Proposal )

‘E .r'If
»
Human Pose
Net (K-FPN) il ™ m-p Interpolation Module
§ ; (HPIM)
Y

Figure 5: Proposed pipeline for video human pose detection. The K-FPN net, which is trained unsupervised,
selects a set of key frames. The HPIM, trained to learn human pose dynamics, generates human poses for the
entire sequence from the poses in the selected key frames.

Figure 6 shows two sample outputs of our pipeline, where the poses shown in purple were interpolated
from the automatically selected red key frames. The advantages of the proposed approach are as follows:

e [tuses a very light, unsupervised model to select “important” frames.

o [tis highly efficient, since pose is estimated only at key frames.

e [t is robust with respect to challenging conditions present in the non-key frames, such as occlusion,
poor lighting conditions, and motion blur.

e [t can be used to reduce annotation efforts for supervised approaches by selecting which frames should
be manually annotated.
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Figure 6: Two examples of the output of our pipeline, (top) ground truth and (bottom) poses recovered from the
automatically selected key frames (red boxes).

The architecture of the frame selection network K-FPN is shown in Figure 7. It is trained completely
unsupervised by minimizing the loss:

|l —p 'DDTS]Y|% + AZ s;
i

where D is a dynamics-based DYAN dictionary, S is a diagonal matrix with diagonal elements s; which are
the selection variables (1 for key frames, 0 otherwise), and Y is a tensor of image features of the input
video. The first term of the loss penalizes reconstruction error of the input features from the features of the
key frames while the second term penalizes the number of key frames.
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Figure 7: K-FPN architecture.

The network has two Conv2D modules followed by a fully connected and an adaptive Sigmoid layer, where
the Sigmoid layer forces the output logits to be close to binary.

The HPIM efficiently interpolates the pose for the entire sequence, H, from the poses in the selected
keyframes, H,:

H = (D(h)D(h)T) PI [Pr (D(h)D(h)T) PI]71 H,

where P; is the selection matrix, D is a dynamics-based DYAN dictionary for the poses, and (D () D(h)T)

can be precomputed.
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We evaluated the proposed approach on two widely used datasets: Penn Action (Table 3) and sub-JHMDB
(Table 4). The input features Y were obtained using the ResNet family [98]. Our approach achieves the best
performance and is 1.6 times faster (6.8 ms versus 11 ms) than the previous state-of-art [99] for the Penn
Action dataset, using an average of 17.5 key frames. Moreover, if we use our lightest model (Resnet34), our
approach is 2 times faster than [99] with a minor PCK degradation. For the sub-JHMDB dataset, we run
more than 2 times faster than [100] without any degradation in accuracy.

#Key Frames
Method Time(ms) AvgPCK (avg,stdev)
Nie etal.[101] - 48.0 N/A
Igal et al. [102] - 81.1 N/A
Gkioxari etal.[103] - 91.9 N/A
Song et al. [104] - 96.8 N/A
Luo et al. [105] 25.0 97.7 N/A
DKD (small CPM) [99] 12.0 96.8 N/A
Baseline [100] 11.3 97.4 N/A
DKD (ResNet50) [99] 11.0 97.8 N/A
Ours (ResNet50) 6.8 98.0 (17.5,4.9)
Ours (ResNet34) 5.3 97.40 (15.2,3.3)

Table 3: Performance evaluation on Penn Action dataset. Red indicates the best results.

#Key Frames
Method Time(ms)  AvgPCK (avg,stdev)
Park et al. 525 N/A
Nie etal.[101] - 55.7 N/A
Iqal et al. [102] - 73.8 N/A
Song et al. [104] - 92.1 N/A
Luo et al. [105] 24.0 93.6 N/A
DKD (ResNet50) [99] - 94.0 N/A
Baseline [100] 10.0 94.4 N/A
Ours (ResNet50) 7.0 94.7 (17.8,1.4)
Ours (ResNet34) 4.7 94.5 (16.3,1.8)

Table 4: Performance evaluation on sub-JHDMB dataset. Red indicates the best results.

C.1.c. Explainable Variational Autoencoders and Anomaly Detection

Applications in safety-critical and consumer-focusing areas demand a clear understanding of the reasoning
behind an algorithm’s predictions, in addition certainly to robustness and performance guarantees.
Consequently, there has been substantial recent interest in devising ways to understand and explain the
underlying “why” driving the output of “what.”

While progress in algorithmic generative modeling has been swift, explaining such generative algorithms is
still a relatively unexplored field of study. There are certainly some ongoing efforts in using the concept of
visual attention in generative models, but the focus of these methods is to use attention as an auxiliary
information source for the particular task of interest, and not visually explain the generative model itself.
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In [106], we take a step toward bridging this gap, proposing the first technique to visually explain
variational autoencoders (VAE), by means of gradient-based attention. The intuition behind the proposed
approach is that the latent space of a trained VAE captures key properties of the encoder, and thus
explanations conditioned on the latent space will be informative about the downstream predictions.

More concretely, as illustrated in Figure 8, given a learned Gaussian distribution in the latent space, we use
the re-parameterization trick to sample a latent code. Then, by backpropagating the activations in each
dimension of the latent code to a convolutional layer in the model and aggregating all the resulting
gradients, we generate the attention map.

K M,
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* 7 M,
o
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P Encoder Reparameterization Generation Attention

Figure 8: Element-wise attention generation with a VAE.

Let g(z|x) be the posterior distribution inferred by the trained VAE for a sample x. For each element of
latent vector z, we backpropagate gradients to the last convolutional feature map 4, to obtain the attention

map Mi corresponding to the element z;:
n
M' = ReLU (Z akAk)

k=1

where the scalar a, is given by:

and GAP is the global average pooling operator and 4, is the k¢ feature channel of the feature map A.

Figure 9 shows an example of an attention map M. There, we can see that each component of the latent
space has consistently high localization responses. All responses can be aggregated for an overall attention
map using, for example, the mean of all the attention maps.
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Sample B Sample C Explanation

Figure 9: Each element in the latent space vector can be explained separately with the proposed attention map.

The attention maps obtained this way can also be used to localize anomaly regions, as illustrated in Figure
10 and Figure 11, given a one-class VAE trained on “normal” data (digit ‘1’, for instance). When the VAE is
given as input for an anomaly (i.e., digit “4”), the latent space for the given sample will be very different
from the learned normal distribution. By simply computing the sum of all elements in the mean vector, we
can obtain a score and backpropagate it to compute an anomaly attention map.

Trained with:

Figure 10: Anomaly localization for Modified National Institute of Standards and Technology database images.
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Figure 11: Anomaly detection using VAE attention maps; (left to right) original test image, ground truth masks,
our attention maps, anomaly detection, and difference between input and VAE reconstruction. The anomalies in
these examples are moving cars, bicycles, and wheelchair.

C.1.d. CLASP: Correlating Luggage and Specific Passengers

In addition to our core research work, we are working on a project with Rensselaer Polytechnic Institute
(RPI) and Marquette University using ALERT’s mock airport security checkpoint at the Kostas Research
Institute. This supplement to ALERT’s core cooperative agreement, Correlating Luggage and Specific
Passengers (CLASP), allows us to generate large amounts of realistic data while facilitating ground truth
annotation. We expect that this dataset will be the starting point for addressing many problems relevant
to TSA.

During Year 7, we continued working on the CLASP task order project. In particular, we focused on the
problem of activity recognition and passenger interactions. Toward this goal, we implemented several
prototype learning neural networks that take combinations of RGB frames and detect actions such as
putting down or picking up objects in or from bins on the conveyor belt and giving an object to another
passenger.

Figure 12 shows a sample frame where the networks detect the action of putting objects in the conveyor
belt bins. In our experiments, we tested using RGB alone, optical flow alone, and RGB and optical flow on a
video with 67 bin transfers and 1 person-to-person transfer. RGB-alone had a precision of 0.88 and a recall
of 0.90, while optical flow alone had 0.86 precision and 0.84 recall. Combining both inputs, precision
improved to 0.91 and recall to 0.94.
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Figure 12: CLASP action detection (person to bin).

C2. Years 1-6

The outcomes achieved in previous years (Years 1-6) are briefly summarized below.

Tracking [107-109]:

We developed an algorithm that uses dynamics-based invariants to robustly track multiple targets
with similar appearances. Our algorithm is faster and has better performance than the previous
state-of-the-art algorithms. We have also developed a set of robust tools for tracking, including
filtering and covariance propagation.

Activity recognition [108, 110-119]:

We proposed an efficient algorithm to detect casual interactions by sparsifying a dynamics-based
graph, where each node represents a time sequence associated with the location of an agent. This
was applied to flag activity of people trying to breach security by moving into the secure area of the
airport via the exit lane.

We developed a set of tools to compare and classify temporal sequences and applied them to the
problem of activity recognition.

We developed a learning neural that takes an input human pose from an actor (e.g. joints or heat
map of joints) and uses our DYAN encoder to capture dynamic information and classify activities.

We proposed a computationally efficient algorithm for the identification of error-in variables
switched systems that can be used to segment activities from time traces of the position of a
person’s centroid in a video sequence.

Human re-identification [120-123]:

In collaboration with Transportation Security Administration (TSA) and the Cleveland Hopkins
International Airport (CLE), we collected and annotated a dataset for human re-identification at
CLE. In collaboration with Great Cleveland Rapid Transit Authority (GCRTA) and the DHS Center of
Excellence VACCINE (Visual Analytics for Command, Control, and Interoperability Environments),
we collected and annotated a second dataset (where targets changed appearance) at bus terminals
in Cleveland, OH.
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e We benchmarked re-id algorithms and proposed a better kernel-based metric learning approach.
We also addressed the problem of re-identifying targets in appearance-impaired scenarios, when
targets have similar appearance or change appearance between views.

e Video prediction [90]:

e We introduced a novel dynamics-based neural network, DYAN, that captures the dynamics of an
input video sequence to predict future frames. The network is very compact, with only 80
parameters and achieved state-of-art performance.

e Weintroduced a new metric to quantify prediction lagging.

e We modified DYAN, using a recursive warping module to reduce temporal lagging in the
predictions.

e Mathematical tools [108,109, 111,112,114, 116,117,124-132]:

e We developed theory-connecting machine learning and systems identification. For example, we
developed the following tools:

¢ A method for robustly estimating the fundamental matrix in stereo camera systems
e A method for linear robust regression in the presence of gross outliers

e A method for subspace clustering capable of incorporating prior information, which is suitable
for motion and planar surfaces segmentation

e An algorithm to chronologically sort crowd-sourced images in order to recover temporal
information of an event

e Arobust algorithm for linear subspace clustering using a sum-of-squares approach
e Deep-model-based approaches [90, 133]:

e We started incorporating our dynamics-based and statistical-based approaches into deep models.
For example, we developed a deep architecture using moments embedding for fine-grain
classification of objects that can only be distinguished by fine details. We also developed a deep
architecture that incorporates dynamics-based layers for video encoding.

e Multi-camera motion segmentation [134]:

e We developed an approach for motion segmentation of data collected with unsynchronized
multiple cameras that combines shape and dynamical information but does not require
spatiotemporal registration or shared features across video streams.

e CLASP [135]:

e We implemented a set of algorithms for tasks related to CLASP, including passenger and bin
detection, and upper body human pose estimation. The performance of the algorithms has been
evaluated using data captured at ALERT’s mock airport security checkpoint located at the NU
Kostas Research Institute (KRI) in Burlington, MA.

D. Milestones

During Year 7, we continued working on the problems of activity segmentation, video prediction, and
passenger-luggage association. We achieved the following milestones:



E.

Appendix A: Project Reports
ALERT Thrust R4: Video Analytics & Signature Analysis
Phase 2 Year 7 Annual Report Project R4-A.1

Improved and tested dynamic-invariants-based deep architectures for video prediction to reduce
prediction lag and process arbitrary length inputs.

Designed and implemented an efficient deep pipeline to estimate human pose. The proposed approach
is two times faster than the previous state of art.

Designed and implemented a visual attention mechanism to explain variational autoencoders, which
can be used for anomaly detection.

Designed, implemented, and tested three preliminary architectures for action recognition for the CLASP
project that can process RGB, optical flow, and a combination of the two to detect actions in real time.

Final Results as Project Completion (Year 7) / No-Cost Extension

Due to the current situation with COVID-19, we have not been able to collect (and label) additional data at
the KRI for our CLASP research. This delay has impacted our ability to train and test our algorithms for
activity detection and activity prediction. As a consequence, we have not been able to complete several of
the anticipated milestones. Thus, we are planning to resume and continue this work through the no-cost
extension period, ending in May 2021, to accomplish the following expected milestones:

MILESTONE 1—Collect and annotate more data at the CLASP facility at KRI that captures a passenger’s
actions, from a side view.

o NEXT STEPS: The collected data will be used to augment public available datasets and train a deep
network for person and person-to-person activities for CLASP data. In particular, we will focus on
interactions between passengers and transportation security officers during secondary screening
and integrate human pose inputs.

MILESTONE 2—Update the K-DYAN encoder to detect occlusions and fill gaps.

e NEXT STEPS: We plan to extend the Kalman module to also run “backward in time” to provide
further noise smoothing and to detect spatial occlusions and train a GAN to fill gaps.

MILESTONE 3—We have implemented a prototype network to perform activity classification, which
has been trained and tested using standard activity recognition datasets. However, the current network
is not robust to partial detections and occlusions. We are making improvements to the current
architecture by incorporating optical flow as part of the inputs.

e NEXT STEPS: In addition to optical flow, we will incorporate human pose estimates as part of the
input. Furthermore, we will use network distillation to eliminate the need to compute optical flow
and pose during testing time in order to reduce computational complexity.

MILESTONE 4—Fine-tune and test the new network performance using CLASP data.

e NEXT STEPS: Once milestones 1 and 3 are completed, we will perform fine-tuning with CLASP data
and will reevaluate the performance.

MILESTONE 5—Extend the network to also perform action prediction. Train and test its performance
using standard activity recognition datasets.

e NEXT STEPS: This will start after milestone 4 is completed.
MILESTONE 6—Fine-tune and test its performance using CLASP data.
e NEXT STEPS: This will start after milestones 1 and 4 are completed.
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III. RELEVANCE AND TRANSITION

A. Relevance of Research to the DHS Enterprise

This research addressed the challenge of processing vast amounts of video data in real-time to enhance
security by: detecting dangerous situations as they evolve; providing supporting actionable information to
mitigate damage; and aiding during forensic analysis of events.

Examples of benefits that a successful “who is doing what, where, and why” system could provide, include:
e Faster throughput in airport security lines without compromising security;

e Avoidance of airport terminal closure due to breach of security incidents (such as a person reaching the
secure gates area through an exit, thus bypassing security);

e Quick identification of recurrent thieves in public transportation terminals; and
o Faster forensic analysis of security incidents.

All of these applications not only have a tangible effect in ensuring public safety, but also have clear
economic benefits, such as reducing human resources needed at airport security checkpoints and reducing
crime in bus terminals.

B. Status of Transition at Project End

The products of this research effort have direct application to the security and surveillance of large public
spaces, such as airports, mass transport system terminals, sport venues, etc. In addition to directly
supporting the homeland security enterprise’s mission, systems endowed with activity analysis capabilities
can assist law enforcement, allow elderly people to continue living independently, and help first
responders and emergency workers prevent hazards from developing into full blown catastrophic
situations. Finally, as part of this work, we continue collecting and labeling data, which will be distributed
to the video analytics community to be used as benchmarks to aid the advancement of the state-of-the-art.

We engaged with potential customers by reaching out to DHS-related agencies such as TSA, and by
presenting our work at professional and industrial meetings. Portions of this work have already been
deployed and tested at CLE, where it was used by TSA officers to detect security threats caused by persons
bypassing airport security at terminal exits. We believe that the system could be transferred to other
airports in the near future. In addition, we are working on a project with RPI and Marquette University
using ALERT’s mock airport security checkpoint at KRI. This supplement to ALERT’s core cooperative
agreement, named Correlating Luggage and Specific Passengers (CLASP), allows us to generate large
amounts of realistic data while facilitating ground truth annotation. We expect that this dataset will be the
starting point for addressing many problems relevant to TSA. Finally, through the transition team at
ALERT, we will also reach out to other DHS entities, such as the US Customs and Border Protection or the
US Coast Guard, to explore transitioning our video-analytics-based threat detection and assessment tools to
agency specific needs.

C. Transition Pathway and Future Opportunities

Our goal is to address the user needs for surveillance of large public spaces, such as airport terminals and
bus stations. As part of this research, we are developing video analytics algorithms and implementing
prototype systems, which are being tested using real-world data to show their feasibility.
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Customer Connections

These are our customers from previous years:

IV.

CLE airport commissioner, Mr. Fred Szabo
CLE TSA, Mr. Michael Young (retired)
GCRTA security chief, Mr. John Joyce

DHS Science and Technology, Apex Screening at Speed Program manager, Mr. John Fortune

PROJECT ACCOMPLISHMENTS AND DOCUMENTATION

Education and Workforce Development Activities

1. Course, Seminar, and/or Workshop Development

a. Professor Octavia Camps taught regular and advanced courses in computer vision, where
students worked on projects for object detection, tracking, and activity classification.

b. Professor Mario Sznaier taught a course in control theory, where students applied concepts of
system identification to design vision-based systems that can be used for surveillance.

2. Student Internship, Job, and/or Research Opportunities
a. Wengian Liu worked as a summer intern at Amazon.

b. Armand Comas worked as an intern at MERL.

Peer Reviewed Journal Articles

1. Dai, T, & Sznaier, M. “A Semi-Algebraic Optimization Approach to Data-Driven Control of
Continuous-Time Nonlinear Systems.” IEEE Control Systems Letters, 5(2), 18 June 2020, pp. 487-
492. https://doi.org/10.1109/LCSYS.2020.3003505.

Peer Reviewed Conference Proceedings

1. Berberich, |, Sznaier, M., & Allgower, F. “Signal Estimation and System Identification with Nonlinear
Dynamic Sensors.” IEEE Conference on Control Technology and Applications, Hong Kong, China, 19-
21 August 2019.

2. Taskazan, B., Miller, ]., Inyang-Udoh, U., Camps, O., & Sznaier, M. “Domain Adaptation Based Fault
Detection in Label Imbalanced Cyberphysical Systems.” IEEE Conference on Control Technology and
Applications, Hong Kong, China, 19-21 August 2019.

3. Dai, T, & Sznaier, M. “Worst-Case Optimal Data-Driven Estimators for Switched Discrete-Time
Linear Systems.” IEEE Conference on Decision and Control, Nice, France, 11-13 December 2019.

4. Miller, ], Zheng, Y., Roig-Solvas, B., Sznaier, M., & Papachristodoulou, A. “Chordal Decomposition in
Rank Minimized Semidefinite Programs with Applications to Subspace Clustering.” IEEE Conference
on Decision and Control, Nice, France, 11-13 December 2019.

5. Ozbay, B.,, Camps, O., & Sznaier, M. “Efficient Identification of Error-in-Variables Switched Systems
via a Sum-of-Squares Polynomial Based Subspace Clustering Method.” IEEE Conference on Decision
and Control, Nice, France, 11-13 December 2019.
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6. Singh, R, & Sznaier, M. “A Convex Optimization Approach to Finding Low Rank Mixed

10.

11.

12.

13.

Time/Frequency Domain Interpolants with Applications to Control Oriented Identification.” IEEE
Conference on Decision and Control, Nice, France, 11-13 December 2019.

Asghari-Esfeden, S., Sznaier, M., & Camps, O. “Dynamic Motion Representation for Human Action
Recognition.” IEEE 2020 Winter Conference on Applications of Computer Vision, Aspen, CO, 1-5
March 2020, pp. 557-566.

Liu, W, Lj, R,, Zheng, M., Karanam, S., Wu, Z., Bhanu, B., Radke, R., & Camps, O. “Towards Visually
Explaining Variational Autoencoders.” IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, 16-18 June 2020, pp. 8642-8651.

Singh, R, & Sznaier, M. “A Loewner Matrix Based Convex Optimization Approach to Finding Low
Rank Mixed Time/Frequency Domain Interpolants.” 2020 American Control Conference, Denver, CO,
1-3July 2020.

Dai, T, Sznaier, M., & Roig-Solvas, B. “Data-Driven Quadratic Stabilization of Continuous LTI
Systems.” 2020 IFAC World Congress, Berlin, Germany, 12-17 July 2020.

Miller, ]., Zhang, Y., Sznaier, M., & Papachristodoulou, A. “Decomposed Structured Subsets for
Semidefinite Optimization.” 2020 IFAC World Congress, Berlin, Germany, 12-17 July 2020.

Ozbay, B., Sznaier, M., & Camps, O. “An Algebraic Approach to Efficient Identification of a Class of
Wiener Systems.” 2020 IFAC World Congress, Berlin, Germany, 12-17 July 2020.

Zhang, Y., Wang, Y., Camps, O., & Sznaier, M. “Key Frame Proposal Network for Efficient Pose
Estimation in Videos.” European Conference on Computer Vision, 23-28 August 2020.

Pending -

1.

Comas Massague, A., Zhang, C., Feric, Z., Camps, 0., & Yu, R. “Learning Disentangled Representations
of Video with Missing Data.” Neural Information Processing Systems, 5-12 December 2020, under
review.

Liu, W,, Comas Massague, A., Zhang, Y., Luo, D., Camps, O., & Szanier, M. “KW-DYAN: A Recurrent and
Warping DYAN for Better Video Prediction.” Neural Information Processing Systems, 5-12 December
2020, under review.

Miller, ]., Wang, ]., Sznaier, M., & Camps, O. “Model Fitting by Semialgebraic Clustering.” Neural
Information Processing Systems, 5-12 December 2020, under review.

Ozbay, B., Sznaier, M., & Camps, 0. “SOS-Spaces: A Sum-of-Squares Polynomial Based Subspace
Clustering Method.” Neural Information Processing Systems, 5-12 December 2020, under review.

Sznaier, M. “A Convex Optimization Approach to Learning Koopman Operators.” Neural Information
Processing Systems, 5-12 December 2020, under review.

Chamanbaz, M., Sznaier, M., Lagoa, C.M., & Dabbene, F. “Probabilistic Discrete Time Robust H2
Controller Design.” 59th IEEE Conference on Decision and Control, Jeju Island, Korea, 14-18
December 2020, accepted.

Dai, T., & Sznaier, M. “A Semi-Algebraic Optimization Approach to Data-Driven Control of
Continuous-Time Nonlinear Systems.” 59th IEEE Conference on Decision and Control, Jeju Island,
Korea, 14-18 December 2020, accepted.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Appendix A: Project Reports
ALERT Thrust R4: Video Analytics & Signature Analysis
Phase 2 Year 7 Annual Report Project R4-A.1

8. Miller, ], Singh, R, & Sznaier, M. “MIMO System Identification by Randomized Active-Set Methods.”
59th IEEE Conference on Decision and Control, Jeju Island, Korea, 14-18 December 2020, accepted.

Other Presentations

1. Seminars

a. Camps, O. “Compact and Interpretable Dynamics-Based Video Representations.” 2020 IEEE/CVF
Area Chair Meeting, Conference on Computer Vision and Pattern Recognition, San Diego, CA,
February 2020.

Software Developed

1. We developed a suite of algorithms for fine grain classification, video prediction, motion
segmentation, and outlier rejection. The code can be downloaded from
http://robustsystems.coe.neu.edu.
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