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II. PROJECT DESCRIPTION

A. Project Overview

The goal of the R3-C research component at the University of Puerto Rico at Mayagüez (UPRM) was to use 
mid-infrared (MIR) laser spectroscopy for the detection of explosives. The end-state of this project was to 
detect residues of explosives on surfaces that could be present due to an explosion or as a threat to citizens 
at a distance. Our approach was based on using a tunable quantum cascade laser (QCL) source as a chemical 
sensor for explosive residues left due to terrorist activities. The infrared spectroscopy (IRS) modalities 
presented in this work were coupled to chemometrics methods of multivariate analysis (MVA) for the 
classification, discrimination, and prediction of the threats.  

The specific aims of the research included: 

• Detection of high explosives (HEs) on metallic/matte substrates at close distances using QCL-GAP (QCL
grazing angle probe) systems (~15cm)

• Use of MVA routines and an artificial neural network (NN) for the detection of the HEs

• Detection of HE traces at off-normal incidence geometries using a MIR source

The challenges/obstacles that the research intended to address included:

• Establishing the differences between standards and real-world samples for the detection of HEs

• Detection of HEs with MIR laser spectroscopy on moving targets

Overcoming these challenges required transitioning from commercially available laser spectrometers 
operating at close distances (~15 cm) to a homebuilt system with the following characteristics:  

• Highly collimated laser beams using a telescope for sensing at long distances (10–30 m)

• Higher power laser source systems 50–200 mW

• Wide spectral coverage: 1000 cm-1: 830–2000 cm-1 (5–12 um)

• Fast scanning systems: 5 s

The work performed under R3-C addressed the detection of HE residues deposited on real-world substrates. 
The focus is mainly on real-world samples, including bare and painted metal parts, clothing, travel bags, 
personal bags, laptop bags/cases, and other relevant substrates. Laser spectroscopy signatures obtained for 
these surfaces allow for the identification/quantification of explosives by coupling the technique to 
multivariate analysis.  
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B. State of the Art and Technical Approach

Chemicals in complex matrices can be identified and quantified based on their unique vibrational spectrum 
[1-6]. IRS and Raman scattering (RS) are the two main branches of vibrational spectroscopy. IRS is a well-
established discipline developing constantly. However, energy sources in the MIR have lacked incremental 
developments, and until now, thermal sources dominated IRS and FT-IR [1-6]. Therefore, remote detection 
capabilities for IRS and RS are limited by their photonic mechanisms. Both techniques characterize, detect, 
identify, and quantify threat chemicals, including HEs and homemade explosives (HMEs) [6-17]. Their ability 
has allowed countermeasures to deter terrorist threats by focusing on remote detection and other interests 
for national defense [7-17].  

There is a need to detect hazardous threat chemicals at trace or near-trace levels on substrates at longer 
distances. To successfully realize this goal, more powerful MIR sources need to be developed which led to 
the consideration of collimated, coherent, and polarized sources. A QCL, which is a unipolar semiconductor 
injection laser based on sub-interband transitions in a multiple-quantum-well heterostructure, was used as 
QCLs have the following advantages over other types of lasers [18-22]:  

• Ability to produce a laser beam from tens to hundreds of milliwatts of pulsed power under ambient
conditions

• Commercial availability

• Ability to enable the development of ruggedized systems for detection of chemical/biological
(CHES/BIO) threats

Most of the previous investigations to detect HEs at trace levels have focused on the detection of HE residues 
deposited on ideal, highly reflective substrates, such as highly polished metallic surfaces [23]. There are very 
few reports published on the effects of nonideal, low-reflectivity substrates on the spectra of the target HEs 
[24]. The work by Suter and collaborators (which measures the spectral and angular dependence of MIR 
diffuse scattering from explosive residue deposited on a painted car door using an external cavity QCL (EC-
QCL)) is the foundation for part of our research [25]. However, our approach is significantly different because 
it focuses on the detection, identification, and discrimination of HEs on highly interfering backgrounds. These 
substrates include wood, natural and synthetic fibers, such as cotton shirts or pants, nylon, and black 
polyester from laptop bags or travel cases, and simulated human skin [24]. The work also centers on using 
robust chemometrics techniques for “on-the-fly” pattern recognition and discriminant analysis, with an 
expected turnaround response time from milliseconds to a few seconds. The main difference between the 
contributions of this research and the current state-of-the-art research is in bridging the gap between lab 
experiments under well-controlled conditions and the real-world detection of explosives residues [26]. 

QCL spectroscopy was used previously for sensitive detection of nitroamine, nitroaromatics, aliphatic 
nitrate, and peroxide-based HEs at long-distances (meters from the source) [23-25,27-33]. Also, it has been 
used for remote detection of a variety of HEs. However, the implementation of MVA with QCL has been 
limited, especially with variating deposition techniques. In addition to principal component analysis (PCA) 
we employed soft independent modeling of class analogies (SIMCA), support vector machines (SVM), Partial 
least squares coupled to discriminant analysis (PLS-DA) and k-nearest neighbors (KNN). KNN has become a 
hot topic for discrimination analysis. In this work, HEs were deposited by spray, spin coating, sample 
smearing, and partial immersion. QCL spectra were acquired and then analyzed using PCA. Also, experiments 
varying the angle of incidence to determine the optimal source and detector position for acquisition of MIR 
laser reflectance spectra was implemented. Spectra were then analyzed with KNN to classify each HE. 
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C. Major Contributions

C.1. Detection of HEs on Reflective Substrate Using MIR laser spectroscopy (Year 1)

The first stage of this project involved confirming the performance of a commercial QCL spectrometer 
(LaserScan Block Engineering) for detecting HEs by validation experiments. The MIR spectroscopic system 
acquired reflectance spectra of films and deposits of chemicals on substrates. Some of the results obtained 
with the QCL system are included in Figure 1. The reflectance spectra measured with QCL and FT-IR 
spectroscopy of nitroaromatic 2,4,6-trinitrotoluene (TNT), aliphatic nitrate ester pentaerythritol tetranitrate 
(PETN), aliphatic nitramine 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and triacetone triperoxide (TATP) 
are shown in the figure [34, 35]. The MIR laser spectra were collected on a smooth aluminum (Al) substrate. 
These spectra serve the purpose of validating the technique for the detection of HEs, explosive 
mixtures/formulations, and chemical precursors. The MIR laser spectra were collected in open-air 
conditions. Thus, water vapor lines were observed on some of the spectra. TATP samples had particularly 
evident water vapor lines because the samples sublimated rapidly, even at room temperatures. In other 
cases, the inherent strength of the MIR signatures of the HEs made the water vapor lines imperceptible. There 
are operational parameters worth discussing: the LaserScan was designed for short focal length work (~15 
cm). Highly reflective polished metallic substrates (e.g., Al, stainless steel, or gold) required a defocused MIR 
laser beam since the specular radiation collected in back reflection mode saturated the detector. 
Alternatively, using an incidence angle of 9–10° avoided detector saturation.  

Figure 1: QCL and FTIR (ref.) spectra of HEs deposited on highly reflective polished Al substrates: (a) TNT, (b) PETN, 
(c) RDX, and (d) TATP. The quality and intensities of the bands are equal or better than those measured by FT-IR.
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C.2. Detection of HEs on Nonreflective (Matte) Substrates Using QCL Spectroscopy (Years 1–2)

The spectroscopic system based on QCL was next used to obtain MIR reflectance spectra of HEs deposited 
on nonideal, low reflectivity matte substrates such as travel bags (TB), cardboard (CB), and wood (W). We 
tested various deposition methods, including spin coating, sample smearing, partial immersion, and spray 
deposition for preparing standards and samples used in the study. The HEs used include TNT, PETN, and 
RDX. Low surface concentrations (1–15 mg/cm2) of HEs were used in the investigation. Figure 2 shows 
representative QCL spectra of TNT, PETN, and RDX on Al, CB, W, and TB. 

Figure 2: QCL spectra of HEs on substrates: (a) Al, (b) CB, (c) wood, and (d) TB. Surface concentrations were 15 
μg/cm2. QCL spectra of substrates are included to establish the degree of spectral interference. 

MIR laser reflectance spectra were used for the surface concentration profiles to perform quantitative MVA. 
A total of nine different surface concentration profiles were assembled: three HEs × three substrates (plus 
three replicas of each combination). QCL spectra of clean Al substrates were used as backgrounds. Figure 3a 
shows some of the RDX spectra recorded on wood substrates; Figure 3b shows spectra for TNT on CB at 
various surface concentrations, and Figure 3c shows measured QCL reflectance spectra for PETN on wood. 
However, the QCL methodology used for detection of explosives on non-reflective (matte) substrates did not 
require the use of multivariate analyses (MVA) for identification of HEs, but rather, as illustrated in Figure 
3d, a single acquisition (3 s) of CB was subtracted from the corresponding QCL spectrum of PETN on CB to 
obtain the difference spectrum of PETN. Comparison with the QCL transflectance spectrum of PETN on Al 
demonstrates that several of the aliphatic nitrate ester signature bands can be readily assigned by 
comparison with the reference QCL spectrum. The only requirement for this type of remote detection 
experiment is to be able to acquire a QCL spectrum of a non-contaminated (non-dosed) segment of the 
substrate. The LaserScan™ spectroscopic system allowed the detection of HEs deposited at low surface 
concentrations (1–15 mg/cm2) on three types of nonideal low reflectivity substrates: travel bag fabrics (TB), 
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cardboard (CB), and wood (w). Spectral identification using spectral correlation algorithms were not 
efficient enough for identifying HEs when present on nonideal low reflectivity, highly mid-infrared absorbing 
substrates. However, multivariate analyses were efficient enough to attain the goals of this investigation. 
Finally, PLS models demonstrated the capability of predicting surface concentrations of HEs on the substrates 
tested using a maximum of eight latent variables (LV) to obtain values of R2 higher than 0.9 [24, 26]. 

Figure 3: Surface concentration profiles for (a) RDX on wood; (b) TNT on CB; and (c) PETN on wood. Difference 
spectrum (d): PETN/CB minus CB and comparison with QCL transflectance spectrum PETN/Al (used as reference). 

C.3. QCL Spectroscopic Library of Explosives (Year 2)

Spectral signatures of explosives were recorded by MIR spectroscopy using a QCL system. Explosive samples 
were deposited on aluminum and real-world substrates such as travel baggage, cardboard, and others. 
Explosives used in this stage of the project were RDX, PETN, and 2,4-dinitrotoluene (2,4-DNT). The 
deposition method utilized was sample smearing. 

C.4. Classical Least Squares–Assisted MIR Laser Spectroscopy Detection of High Explosives on Fabrics (Years 3–5)

MIR laser spectroscopy was used to detect the presence of residues of HEs on fabrics. The discrimination of 
the vibrational signals of HEs from a highly MIR-absorbing substrate was achieved by a simple and fast 
spectral evaluation, without preparation of standards, using the classical least squares (CLS) algorithm [36]. 
CLS focuses on minimizing the differences between the spectral features of the actual spectra acquired by 
MIR spectroscopy and the spectral features of calculated spectra modeled from linear combinations of the 
spectra of neat components: HEs, fabrics, and bias. Samples in several combinations of cotton fabrics / HEs 
were used to validate the methodology. Several experiments were performed focusing on binary, ternary, 
and quaternary mixtures of TNT, RDX, PETN, and fabrics. The parameters obtained from linear combinations 
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of the calculated spectra were used to perform discrimination analyses and to determine the sensitivity and 
selectivity of HEs to the substrates and each other. However, discrimination analysis was not necessary to 
achieve the successful detection of HEs on cotton fabric substrates [37]. 

C.5. QCL Spectroscopy at Grazing-Angle Incidence Using Fast Fourier Transform Preprocessing (Years 4–7)

A simple optical layout for a grazing angle probe (GAP) mount for coupling to a MIR QCL spectrometer was 
designed and developed. This assembly enables reflectance measurements at high incident angles. In the 
case of optically thin films and deposits on MIR reflective substrates, a double-pass effect occurs, 
accompanied by the absorption of deposited samples in a reflection-absorption infrared spectroscopy 
modality. The optical system allows MIR light to pass through the sample twice. Applications to the detection 
of traces of explosives using the QCL-GAP were also developed. They have been published in various peer-
reviewed journals. Principal component analysis and partial least squares multivariate chemometrics 
methods were employed to analyze MIR spectra to evaluate an analytical methodology for confirming the 
presence of residues of pharmaceutically active ingredients (irbesartan) and of traces of explosives (RDX) 
that have been deposited on metallic substrates. The performance of spectral preprocessing via fast Fourier 
transform (FFT) analysis was evaluated for the ability to extract more robust and accurate information from 
the obtained reflectance spectra. According to the figures of merit or distinguishing attributes of this new 
technique, FFT with chemometric routines can obtain sensitivity and specificity values of 1.000. The limit of 
detection obtained for RDX was 7 ng/cm2. The experimental results demonstrate that the proposed system, 
when used together with proper chemometrics routines, constitutes a powerful tool for the development of 
methodologies that have lower detection limits for a range of applications that involve detecting traces of 
analytes that reside on substrates as contaminants [38]. 

C.6. Design and Construction of a Homebuilt MIR Laser Spectrometer System (Years 6–7)

Commercial MIR lasers (QCLs) are already predispersive systems: the grating selected wavelength of the 
output beam can be scanned very fast, maintaining high accuracy and precision. However, coupling to fast 
detection systems, in our case, was not a trivial problem to solve. The first approach to obtain data acquisition 
routines based on National Instruments (NI) LabView™ from researchers affiliated with National Labs or 
from other researchers in the field was not successful. A commercial solution to the problems was not within 
reach (>$35k). Thus, several members of our research team had to be involved in the solution of the problem. 
The first successful experiments are reported here. First, the development of an interface using LabView™ to 
acquire spectroscopic data from a QCL source and a mercury-cadmium-telluride (MCT) cryocooled detector 
has not been thoroughly discussed in the literature. A few research papers have focused on parts of the 
algorithms that can be employed [39-41]. However, none fully describes a procedure that can be 
programmed as a Virtual Instrument (VI) code in LabView, including acquisition and data processing 
required to interface a fast laser with an equally fast data acquisition board (analog to digital card) and 
detector. Software developed in LabView to implement the required interface was created for this purpose.  

An ultrafast conversion data acquisition card (DAQ; 200 mega samples/s) was used to capture the signals from 
the preamplifier, which is connected to the MCT detector, as shown in Figure 4. The system can acquire 
potential difference (volts) as a function of time and performs the signal processing required to obtain the 
spectroscopic information related to the samples. The advantage of developing this in-house system was that 
it facilitated coupling QCL systems with traditional IRS and FT-IR techniques to perform studies with the 
advantages of a laser source. Among these techniques are transmission, absorbance, diffuse reflectance 
infrared spectroscopy (DRIRS), attenuated total reflectance (ATR), and grazing angle incidence reflectance 
(GAIR) which enables the most sensitive IRS technique: reflectance-absorption infrared spectroscopy (RAIRS).  
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Figure 4: (a) Schematic diagram of the transmission setup using QCL-MCT; (b) calibration of QCL-MCT using a 
polystyrene film in transmission mode. 

C.7. Variable Angle of Incidence MIR Laser Spectroscopy Method for Diffuse Reflectance Measurements (Years 7–8) 

The study focused on the development of a MIR laser reflectance method to perform spectroscopic measurements 
at ten angles of incidence from 12° to 84° for PETN (81.4 µg/cm2 ), RDX (47.4 µg/cm2), and Tetryl 62.7 µg/cm2. 
The energetic materials were deposited on substrates with different properties such as the index of refraction, 
reflectivity (metallic or nonmetallic), and surface roughness. Those differences produce complex infrared spectra, 
which make it challenging to identify vibrational signatures by sight. Previous results have shown that higher 
angles of incidence (grazing angle) provide high signal to noise ratios and cover a more extensive sampling area. 
However, real-life applications could require measurements at an angle of incidence different from grazing angles. 
QCL has a powerful source of mid-IR that could compensate for the scattering due to the nature of the experiments 
and still obtain a strong signal. Deep learning emerged as an advanced artificial intelligence method that 
discovered patterns in the spectra without supervision; therefore, its synergy with QCL spectroscopy leads to the 
development of more sophisticated detection systems capable of identifying threats in public places by using 
copius amounts of data collected in airports security checkpoints and laboratories. The algorithm resembles our 
brain’s process of learning. A set of NN layers made of compound nodes “learns” from reliable spectra labeled 
with its corresponding class. After the learning stage finishes, the algorithm is ready for classification. The goal of 
the project was to cover a wide range of angles of incidence with respect to the surface normal vector of the 
substrate using a robust a MIR laser, as shown in Figure 5.  The goal was to construct a database that could be 
coupled with AI algorithms for identification and classification of HEs. The method proposed in this study could 
be used in airports to inspect surfaces of baggage using diffuse reflectance laser spectroscopy. The acquisition of 
spectra at several angles of incidence increases the probability of detecting threats independent of the position 
with respect to the QCL and the detector of the luggage in a conveyor belt.  

Figure 5: (a) Optical setup for multi-angle incidence diffuse reflectance spectroscopy. (b) Side view. 
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A total of 450 spectra were collected containing 830 bands from 930 to 1,375 cm-1. A total of 80% of the 
spectra are separated and labeled with their corresponding class used to train the NN model. A PCA was used 
as a preprocessing step to select only the most significant bands. Those bands represent the representative 
features that identify each class. The parameters of the model (the weights) were optimized at each iteration 
to minimize the percentage of misclassified samples. The training finished when the number of iterations 
was reached. Afterward, the validation stage began. The remaining 20% of the spectra collected were used 
to test the model (test set). The results are presented using a confusion matrix. The values in the diagonal of 
the matrix represent the spectra correctly classified. The overall performance of each stage is shown in the 
right lower corner of the matrix (shaded in gray), as shown in Figure 6. The green shaded values represent 
the percentages of the success rate. No additional data was collected for validation. Hence, the values on the 
validation confusion matrix are zero. Finally, the overall performance of the model is display on the “All 
Confusion” matrix, which combines the results from the confusion matrix for the training set and the 
confusion matrix for the test set. Several trials were conducted to find the best parameters of the model, such 
as the number of classes and if PCA data reduction was applied successfully. 

C.7.a. First Trial: Classification Based Only on HEs

A general KNN model, only considering three classes (PETN, RDX, and tetryl), was generated for classification 
of the samples belonging to these classes. Initially, the NN model was overfitting the data, but it was not 
generalizing. This conclusion is generated from the training confusion matrix and test confusion matrix. 
Figure 6 show a 97.2% of overall accuracy. Still, there was only 34.1% of overall accuracy for the testing. 
These results were computed using three layers arranged as follows: three nodes in the first layer, one node 
in the second layer, and finally, two nodes in the last layer. The number of iterations was set to 7,000, and 
only 22% of the data was selected for training.  

Figure 6: Preliminary results—confusion matrix of targets (1) PETN, (2) RDX, and (3) tetryl. 
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C.7.b. Second Trial: Classification Based Only on HEs and Substrates

Improving the prediction capability required the research team to create more classes for the same data, as 
shown in Table 1. The parameters employed for the second trial were similar to the first trial: three layers 
arranged as follows: three nodes in the first layer, one node in the second layer, and finally two nodes in the 
last layer. The number of iterations was set to 4,000, and only 20% of the data was selected for the test set. 
In this case, an overall accuracy for the training stage was 96.7% as can be seen in Figure 7. For the testing 
stage, an overall accuracy of 12.2% is shown in Figure 8. This means that the network was training well but 
the prediction had a low accuracy. The overall true positives of the model were 80% as we can see in Figure 
9. However, the model needs to be improved to increase prediction in the testing stage.

1 2 3 4 5 6 7 8 9 
PETN 
Al 

PETN 
Glass 

PETN 
Vinyl 

RDX 
Al 

RDX 
Glass 

RDX 
Vinyl 

Tetryl 
Al 

Tetryl 
Glass 

Tetryl 
Vinyl 

Table 1: Classes for training the KNN model. 

Figure 7: Preliminary results—confusion KNN matrix used to separate nine classes. 
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C.7.c. Third Trial—Classification Based Only on Energetic Material and Substrate

The same parameters employed in the second trial were used for the third model. The number of 
contributing bands (vectors) was reduced to twenty using PCA. This reduction retained the twenty most 
significant bands that contribute more significantly to the spectroscopic data set. The overall accuracy for 
testing data increased to 27.8% while the overall accuracy for the training data decreased to 56.4%. It is 
essential to highlight that the comprehensive training time for the 896 bands was around 1 hour. Using 20 
bands the model converged in 3 minutes. We are currently working on improving the predictability of the 
deep learning model by preprocessing the spectra and also by increasing the number of nodes per layer. 

C.8. Characterization and Classification of Standards Samples Using QCL-GAP Laser Spectroscopy (Years 7–8)

The use of MIR lasers (QCLs) provides the user with the capability to detect substances that may present 
interferences even at low concentrations. Our approach entails the signal enhancement of HEs by using the 
GAP. The results using a Block Engineering, LLC portable system coupled to the GAP mount are presented 
for the characterization of standards obtained from the Naval Research Laboratory (NRL, Washington, DC) 
as a part of the SED-V Program: DHS Methods of Optical Detection of Explosives (MODEx). Figure 8 shows 
the samples first analyzed and used to characterize the HEs, which included: RDX, tetryl, and PETN deposited 
on acrylonitrile butadiene styrene (ABS) and Al used as matte and reflective substrates as shown 
respectively. The acquired spectra of the characterization for the HEs are presented in Figure 9a and Figure 
9b. The normalized spectra for each HE are shown in comparison to the pure substance synthesized in our 
laboratory. The IR spectrum of the tetryl was simulated using the OPT + FREQ job setup in Gaussian 
(Gaussian, Inc. Connecticut, USA) with density functional theory (DFT), 6-311 + G(2d,p) basis set and B3LYP 
hybrid functional.  

Figure 8: White light micrographs of ABS and Al substrates loaded with HEs used for spectral acquisition. 
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Figure 9: Normalized reflectance spectra of various HEs deposited on the substrates used as standards (a) Al 
reflective substrate; (b) ABS matte substrate.

PCA models for the standards were generated using MVA routines to differentiate between the explosives 
deposited and the substrates used for the analysis. The complete MIR spectral region from 833 to 1,428 cm-1 
was used to investigate these variables. Scores for principal component 1 (PC-1) and PC-2 presented the two 
most notable variations (percent variance) for the spectra acquired on both substrates. Figure 10 shows the 
scores plot (PCA plot) for ABS, where PC-1 accounted for 46% of the total spectral variance, and a value of 
37% for PC-2. Most of the information contained in PC-1 and PC-2 showed a complete separation between 
the classes of HEs for both substrates. The classes considered include the substrates with the three types of 
HEs at different concentrations to identify the variance between the vibrational signatures of the HEs. The 
percentage of the variance is mainly attributed to the difference in the signals for the HEs. A second score 
plot, shown in Figure 11, was generated for the samples deposited on Al. The PC-1 score plot shows the main 
variation in vibrational signatures for the analytes, where the most prominent signals are attributed. In this 
case, PC-1 explained 46% of the total variance, while PC-2 contributed to 20%. Both PCA scores plots for ABS 
and Al required the preprocessing steps of the Savitzky-Golay first derivative using a second-order 
polynomial fit of 15 points followed by minimization of scattering effects by particle-size distribution using 
standard normal variate (SNV). 
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Figure 10: Scores plot for PETN, RDX, and tetryl on ABS substrate in terms of PC-2 versus PC-1. The 95% confidence 
level used in the analysis is also shown. 

Figure 11: Scores plot for PETN, RDX, and tetryl on Al substrate in terms of PC-2 versus PC-1. The 95% confidence 
level used in the analysis is also shown. 

ALERT 
Phase 2 Year 7 Annual Report 

Appendix A: Project Reports 
Thrust R3: Bulk Sensors & Sensor Systems 

Project R3-C



C.9. PCA Classification of Standards Versus Commercial Aerosol Deposition Samples

Samples representing “real-world” surfaces were prepared by using a Paasche VL series Double Action 
Internal Mix Airbrush (Harwood Heights, IL, USA), as shown in Figure 12. Samples containing the HE, PETN, 
were deposited on the surface on reflective substrates stainless steel (SS), aluminum (Al), and Teflon as 
matte. The MIR spectra obtained from each deposition were characterized and used to classify between the 
standards and the samples, representing how the HE might be found in a heterogeneous surface.  

PCA models were used as a method to validate the HE deposited utilizing the aerosol. The models showed 
significant variations in the classification of the HE, and it depended on the properties of the substrate. The 
preprocessing treatment that best classified the HE required Savitzky-Golay first derivative with 2nd order 
polynomial fit of 15 points followed by SNV. Figure 13 shows the PCA plot generated for the HE in Al, partially 
reflective standards in comparison to the Al samples with the PETN deposited using the spray. The PC-1 
explained 30% of the variance, while PC-2 accounts for 26%. In this case, it was expected that the PETN used 
for the aerosol deposition samples collided with the PETN standards. The difference in the classification may 
be attributed to the difference in the Al substrate used in comparison to the standard. 

Figure 13: Scores plot PETN, RDX, and tetryl on Al substrates. PETN deposited using aerosol in spray Al is shown for 
validation of the HE. 

Figure 12: Setup for the MIR QCL-GAP system, including the aerosol deposition on SS, Teflon, and Al substrates. 
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A second score plot was generated for the nonreflective (matte) substrates. Teflon with PETN deposited 
using aerosol was compared to the HE deposited on ABS. These samples were used as the lowest reflective 
substrates, an essential aspect of the RAIRS experiments. The classification score plot for the HE in ABS 
standards and PETN in Teflon is shown in Figure 14. The PETN for both samples, standards, and 
nonstandards were classified with similar scores. PC-1 explained a percentage of 31%, while the PC-2 score 
explained the variance of 22%. The nitroaromatic compounds, RDX, and tetryl were also classified in this 
model. This model of the nonreflective substrate was able to fully classify PETN samples deposited on both 
ABS and Teflon, merging the PETN under one classification. The results for this model prove that the MVA 
routine used can differentiate between other HEs. The third model for the classification of the data included 
the highly reflective substrate, stainless steel with the PETN deposited utilizing the spray, and was compared 
to the partial reflective substrate Al as a standard. The model grouped the different compounds in the score 
plot but was not able to fully classify the PETN using the spray with the PETN standard. The plot for this 
model is shown in Figure 15.  

Figure 14: Scores plot for PETN, RDX, and tetryl on the ABS matte substrate. PETN deposited using air spray-on 
technique on Teflon substrates is shown for the validation of the HE. 
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Figure 15: Scores plot for PETN, RDX, and tetryl on Al substrate. PETN deposited using air spray on SS reflective 
substrate. 

The variations in the signals that classified the HEs and created the presented models were evaluated in 
terms of the loadings for the three models. The difference in the reflectiveness of the substrate may have 
caused interferences in this model, as well as the deposition method used. The deposition for this analysis 
plays a significant aspect since it is expected that a homogeneous deposition using a printer or direct 
deposition is more reliable than spray due to the loss of sample during the sample preparation. The use of 
other PC scores could aid in the classification of the PETN while varying the preprocessing treatments.   

D. Expected Milestones at Project End

The key milestones from this year’s project are related to the application of MVA routines for accurate 
detection using MIR QCL spectroscopy.  In line with the no-cost extension provided on the ALERT Year 7 
award, we will continue to work towards the completion of the following milestones up to or before May 
2021: 

• Finish the design of the multipass system (August 2020)

• Couple the setup to MVA routines to evaluate the effectiveness of the system (December 2020)

• Enhance factors: Ag/Au nanoparticles embedded on substrates for creation of materials for detection at
lower concentrations: surface enhanced infrared reflectance (SEIRR); project recently started.

• Finish the computational chemistry of target chemicals (December 2020)

E. Final Results at Project Completion (Year 7)

One of the most important outcomes and contributions from this research component is the characterization 
of trace and near-trace to semi-bulk amounts of HEs. Deposition methods of HEs on substrates of interest to 
the homeland security enterprise, in general, must be characterized both morphologically and 
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spectroscopically. The project has achieved significant advances related to trace-level HE detection with the 
coupling of the QCL spectrometer to the GAP (QCL-GAP). The deposition methods were varied by introducing 
samples that represent real-world heterogeneous surfaces with the HE. Classification models were created 
using the acquired spectroscopic data containing the vibrational signatures. The validation aspect was 
achieved by using the NRL standards. The models were able to classify the HEs according to the substrate, 
and HE deposited.  

Another contribution of this project was realized by the variation of the incident angle from 12° to 84° for 
the HEs under study. The investigation was carried out using the QCL with a neural network analysis 
algorithm for the sorting of the classes by creating confusion and test matrices. A total of nine classes were 
analyzed to predict the HEs when using spectra with the variation of the angles. KNN is still under the MVA 
tool in our lab and is expected to continue providing results based on the training of data to improve the 
prediction of samples.  

III. RELEVANCE AND TRANSITION

A. Relevance of the Research to the DHS Enterprise

Over the years, incidents involving attacks have fortunately decreased due to technological advancements 
and rigorous security measures; however, threats still exist. The detection, identification, and quantification 
of HEs, homemade explosives (HMEs), precursors, and new green explosives continue to be a high priority 
for security agencies. 

• Development of a methodology for detection, identification, discrimination, and quantification of
explosives in the presence of highly interfering backgrounds

• Mass range from bulk (0.1 g) to trace (10 ng) at close distances (~15 cm) for potential operation at
checkpoints and mid to long remote distances

• The methodology under development will provide a positive/negative result or a confidence level
indication to the operator for the presence of explosives within (<3 s), with a goal of (1 s)

• The methodology will operate effectively in field environments at multiple distances with varying
amounts of humidity, air particulates, temperature, light, and wind

• The methodology will be useful in providing evidence of post-terrorist events by detecting explosives
residues on dirt, concrete, wood, cardboard, bricks, and other surfaces

• Two invention disclosures for patent applications on coupling technology under development for robust
separation and quantification methodologies

• Neural network analysis, multivariate routines, and partial least squares discriminant analysis for data
analysis and generation of prediction models

The impact of developing QCL-GAP technology through this effort is particularly essential to the HE trace 
detection community in security and defense applications. It is particularly important for development of 
methods that can determine if individuals have been in contact with HE illicitly. QCL-GAP system operated 
in standoff mode with chemometrics-based MVA should become a new technological approach for rapid 
detection of HE traces.  
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B. Status of Transition at Project End

• Will continue to seek partnerships for the ongoing development of methods of detection of explosives
and hazardous chemicals with companies that fabricate laser sources for MIR or are involved in
explosives detection instruments/methodologies

• Have already shared papers and described the invention disclosures that have resulted from this project
to most of the potential partners

• Plan to submit a proposal to DHS Small Business Innovation Research (SBIR) Topic solicitation in the
subject area of Research and Development of Countering Biological Weapons of Mass Destruction
threats. The first phase of the topic solicitation pitch paper was recommended for competition in two of
the topics selected. The proposal was submitted on June 19, 2020.

C. Transition Pathway and Future Opportunities

C.1. Sub-Project 1

The sub-project described in Task 1 will be either a “spinoff” small startup with alumni from the UPRM 
chemistry doctoral program in Applied Chemical Sciences and former ALERT-II R3-C students in the form of 
a Small Business Innovation Research (SBIR) proposal channeled through the Puerto Rico Science Trust. 
Another possible mechanism is to apply to DHS, Department of Defense, or the National Science Foundation 
for an SBIR together with Michele Hinnrichs and VERLUZ, LLC (PAT, Inc.). We have already submitted an 
invention disclosure for a patent (“Grazing Angle Probe Mount for Quantum Cascade Lasers”; Ser.#: 
62/587,557; filing date 11/17/2017). The planned prototype would be a portable explosives detection 
system (EDS), physically coupled to MIR fiber optics, user friendly, and completely contained in a small frame 
rugged box.  

The goal of Sub-Project 1 is to fully develop QCL-GAP setups coupled to MVA for the detection of HEs on 
reflective and non-reflective substrates and to transition the technology through an SBIR to build a portable 
system prototype. 

The expected outcomes include: 

• Developing portable QCL systems setups for the detection of HEs on non-reflective substrates

• Building a lab-based fiber optics coupled QCL-GAP

• Completing the design and development of the multipass system

• Strengthening our research, education, and training STEM facilities, focusing on explosives sensing
concepts and data analysis at the University of Puerto Rico.

This ongoing process is visualized to allow for continuous, sustainable participation of undergraduate 
students and development of faculty from the BS program focused on Technology in Industrial Chemical 
Processes at UPR at Arecibo. Students and faculty members will be pipelined into UPRM MS and PhD 
programs and further into DHS, US government, and private sector internships and work opportunities. 

C.2. Sub-Project 2

Planning of a joint venture with Michele Hinnrichs (VERLUZ, LLC; Humacao, PR), a division of Pacific 
Advanced Technology, Corp. (Solvang, CA), Targeted SBIR: DHS (Jim Jensen, DHS program manager, 
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Edgewood Chemical Biological Center, Aberdeen Proving Grounds, Aberdeen, MD). Other possible sources of 
funding are DoD-DTRA, other DoD divisions, and NSF.  

The goal of Sub-Project 2 is to transition Laser-Induced Thermal Imaging Spectroscopy (LITIS) together with 
VERLUZ, LLC. 

The expected outcomes include: 

• Establishing the feasibility of LITIS on reflective and dielectric (i.e., non-reflective) substrates using
various HEs/substrates combinations

• Establishing the limits of detection and quantification of the technique

• Establishing a joint venture with an industrial partner (VERLUZ, LLC) for developing an instrument
capable of detecting explosive residues at a distance using an active sensing modality.

C.3. Sub-Project 3

Intellectual property stemming from this task will be made available, cost-free, possibly through a 
mechanism similar to the one used by the University of Rhode Island, with its database of explosives 
properties. 

The goal of Sub-Project 3 is to predict the performance and thermochemical properties of new energetic 
materials using computational chemistry, from a given molecular structure without using experimental 
measurements. 

The expected outcomes include: 

• Predicting the detonation parameters without experimental data for a systematic set of novel green
energetic materials with high nitrogen and low carbon content as triazoles, tetrazoles, azidotetrazoles,
triazene, nitro-substituted cage compounds, and oxygen-rich organic peroxides

• Training students in computational chemistry to integrate the information provided by different
programs of molecular modeling and chemometrics routines for the prediction of explosive properties

IV. PROJECT ACCOMPLISHMENTS AND DOCUMENTATION

A. Education and Workforce Development Activities

1. Student Internship, Job, and/or Research Opportunities

a. Annette M. Colón-Mercado, MS student, summer 2020, research internship, Naval Research Lab,
Indian Head division, Washington, DC (canceled due to COVID-19)

b. Francheska M. Colón González, MS student, summer 2020, research internship, Sandia National
Laboratories, Albuquerque, New Mexico (canceled due to COVID-19)

2. Training to Professionals or Others

a. Raman Spectroscopy Workshop I, October 2019, Society for Applied Spectroscopy (SAS-UPRM)

b. Raman Spectroscopy Workshop II, November 2019, SAS-UPRM

c. Raman Spectroscopy Workshop III, March 2020, SAS-UPRM
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B. Peer Reviewed Journal Articles

1. Pacheco-Londoño, L.C., Galán-Freyle, N.J., Figueroa-Navedo, A.M., Infante-Castillo, R., Ruiz-Caballero,
J.L., & Hernández-Rivera, S.P. “Quantum Cascade Laser Back-Reflection Spectroscopy at Grazing-
Angle Incidence Using the Fast Fourier Transform as a Data Preprocessing Algorithm.” Journal of
Chemometrics, 33, 29 July 2019, p. e3167. https://doi.org/10.1002/cem.3167.

2. Pacheco-Londoño, L.C., Ruiz-Caballero, J.L., Ramírez-Cedeño, M.L., Infante-Castillo, R., Gálan-Freyle,
N.J., & Hernández-Rivera, S.P. “Surface Persistence of Trace Level Deposits of Highly Energetic
Materials.” Molecules, 24(19), 26 September 2019, p. 3494.
https://doi.org/10.3390/molecules24193494.

3. Galán-Freyle, N.J., Ospina-Castro, M.L., Medina-González, A.R., Villarreal-González, R., Hernández-
Rivera, S.P., & Pacheco-Londoño, L.C. “Artificial Intelligence Assisted Mid-Infrared Laser
Spectroscopy in situ Detection of Petroleum in Soils.” Applied Sciences, 10(4), 15 February 2020, p.
1319. https://doi.org/10.3390/app10041319.

4. Pacheco-Londoño, L.C., Warren, E., Galán-Freyle, N.J., Villarreal-González, R., Aparicio-Bolaño, J.A.,
Ospina-Castro, M.L., Shih, W.C., & Hernández-Rivera, S.P. “Mid-Infrared Laser Spectroscopy
Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial
Intelligence.” Applied Sciences, 10(6), 31 May 2020, p. 1319.
https://doi.org/10.3390/app10041319; https://doi.org/10.3390/app10124178.

Pending – 

1. Colón-González, F.M., Perez-Almodovar, L.A., Barreto-Pérez, M., Vargas-Alers, G.L., Santos-Rolón, J.M.,
& Hernández-Rivera, S.P. “Raman Scattering Detection of High Explosives on Human Hair.” Optical
Engineering, submitted February 2020.

2. Colón-Mercado, A.M., Vázquez-Vélez, K.M., Caballero-Agosto, E., Villanueva-López, V., Infante-
Castillo, R., & Hernández-Rivera, S.P. “Detection and Classification of High Explosives Samples
Deposited on Various Substrates Types Using a Mid-infrared Laser Grazing Angle Probe Assisted by
Multivariate Analysis.” Optical Engineering, submitted February 2020.

3. Galán-Freyle, N.J., Pacheco-Londoño L.C., Figueroa-Navedo, A.M., Ortiz-Rivera, W., Castro-Suarez,
J.R., & Hernández-Rivera, S.P. “Modulated-Laser Source Induction System for Remote Detection of
Infrared Emissions of High Explosives Using Laser-Induced Thermal Emission (LITE).” Optical
Engineering, submitted February 2020.

C. Other Presentations

1. Poster Sessions

a. Caballero-Agosto, E.R., Infante-Castillo, R., & Hernández-Rivera, S.P. “1H, and 13C NMR Chemical
Shifts Prediction Models for Peroxi-Based Compounds with Computational Chemistry” [poster].
Industrial Advisory Board Meeting, Awareness and Localization of Explosive-Related Threats,
Northeastern University Innovation Campus at Burlington, MA. 4 November 2019.

b. Colón-Gonzalez, F.M., & Hernández-Rivera, S.P. “Detection of HE’s on Human Hair by Raman
Spectroscopy” [poster], Industrial Advisory Board Meeting, Awareness and Localization of
Explosive-Related Threats, Northeastern University Innovation Campus at Burlington, MA. 4
November 2019.
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c. Colón-Mercado, A.M., López-Pagán, B.M., Ruíz-Caballero, J.L., & Hernández-Rivera, S.P. “Enhanced
Detection of High Energetics Materials in Substrates Using Tunable Quantum Cascade Laser-
Grazing Angle Probe” [poster], Industrial Advisory Board Meeting, Awareness and Localization
of Explosive-Related Threats, Northeastern University Innovation Campus at Burlington, MA. 4
November 2019.

2. Interviews and/or News Articles

a. Colón-Mercado, A.M. “Meet the ALERT Students.” Industrial Advisory Board Meeting, Awareness
and Localization of Explosive-Related Threats, Northeastern University Innovation Campus at
Burlington, MA. 4 November 2019.

b. Colón-Mercado, A.M. “Student from RUM Stands Out in DHS Security Challenge.” Primera Hora,
local PR newspaper, 23 November 2019. https://www.primerahora.com/noticias/puerto-
rico/notas/estudiante-del-rum-se-destaca-en-competencia-del-departamento-de-seguridad-
nacional/.

D. Student Theses or Dissertations Produced from This Project

1. Colón-González, F.M. “Detection and Discrimination of High Explosives on Human Hair by Raman
Scattering.” MS Thesis, University of Puerto Rico at Mayagüez, May 2020.

2. Colón-Mercado, A.M. “Quantum Cascade Laser-Grazing Angle Spectroscopy Detection of High
Explosives Deposited on Various Substrates Using Air Spray.” MS Thesis, University of Puerto Rico at
Mayagüez, May 2020.

3. Padilla-Rivera, G.I. “TNT and MO Photodegradation in Deionized and Salt Waters with Visible Light
Assisted by Photoactivation of Modified TiO2.” MS Thesis, University of Puerto Rico at Mayagüez,
May 2020.

E. New and Existing Courses Developed and Student Enrollment

F. Technology Transfer/Patents

1. Patent Applications Filed (Including Provisional Patents)

a. Hernández-Rivera, S.P., & Castro-Suarez, J.R. “Coupling of Thin-Layer Chromatography (TLC) to
Quantum Cascade Laser Spectroscopy (QCLS) for Qualitative and Quantitative Field Analyses of
Explosives and Other Pollutants.” U.S. Patent 10,379,033 B1, 13 August 2019.

G. Software Developed

1. Databases

a. Ongoing: Library of vibrational spectra of HEs, HMEs, and precursors.

New or 
Existing Course/Module/Degree/Cert. Title Description 

Student 
Enrollment 

Existing 
Certificate program course in 
forensic chemistry 

Chemistry of 
Explosives 

For students of chemistry and 
chemical engineering 
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2. Algorithms

a. Fast Fourier Transform preprocessing programmed in MATLAB 8.6.0.267246 (R2015b;
MathWorks Inc., Natick, USA). This algorithm is being used to remove interference fringes from
thin HE films generated by GAP-QCL RAIRS measurements. Used in Pacheco-Londoño, L.C., Galán-
Freyle, N.J., Figueroa-Navedo, A.M., Infante-Castillo, R., Ruiz-Caballero, J.L., & Hernández-Rivera,
S.P. “Quantum Cascade Laser Back-Reflection Spectroscopy at Grazing-Angle Incidence Using the 
Fast Fourier Transform as a Data Preprocessing Algorithm.” Journal of Chemometrics, 33, 29 July
2019, p. e3167. https://doi.org/10.1002/cem.3167.

V. REFERENCES

[1] Schraeder, B. (1995) “Early history of vibrational spectroscopy,” in “Infrared and Raman Spectroscopy:
Methods and Applications,” Edited by Schrader, B., VCH, Weinheim, Germany.

[2] Sheppard, N. (2002) “The Historical Development of Experimental Techniques in Vibrational
Spectroscopy,” in “Handbook of Vibrational Spectroscopy,” Chalmers, J. M. and Griffiths, P. R. Eds.,
Wiley, Chichester, West Sussex, England, Vol. 1, pp. 1-32.

[3] Griffiths, P. R., (2002) “Introduction to Vibrational Spectroscopy,” in “Handbook of Vibrational
Spectroscopy,” Chalmers, J. M. and Griffiths, P. R. Eds., Wiley, Chichester, West Sussex, England, Vol. 1,
pp. 1-11.

[4] Griffiths, P. R. and de Haseth J. A. (2007) “Fourier Transform Infrared Spectrometry,” 2nd Ed., John Wiley
& Sons, Inc., Hoboken, NJ.

[5] Larkin, P., (2011) “Infrared and Raman Spectroscopy: Principles and Spectral Interpretation” Elsevier
Waltham, MA.

[6] Yinon J. and Zitrin S., (1996) “Modern Methods and applications in the analysis of explosives,” John Wiley
& Sons Ltd., Chichester, UK.

[7] Castro-Suarez, J. R., Ortiz-Rivera, W., Galán-Freyle, N., Figueroa-Navedo, A., Pacheco-Londoño, L. C. and
Hernández-Rivera, S. P., “Multivariate Analysis in Vibrational Spectroscopy of Highly Energetic Materials
and Chemical Warfare Agents Simulants” in “Multivariate Analysis in Management, Engineering, and the
Sciences,” Valim de Freitas, L., and Barbosa Rodrigues de Freitas, A.P., eds., ISBN 978-953-51-0921-1,
Hardcover, 254 pages, Publisher: InTech, Rijeka, Croatia, 2013, DOI: 10.5772/3301.

[8] Steinfeld, J. I. and Wormhoudt, J., (1998) Anu. Rev. Phys. Chem. 49, 203.

[9] Committee on the Review of Existing and Potential Standoff Explosives Detection Techniques, (2004)
“Existing and Potential Standoff Explosives Detection Techniques,” National Research Council, National
Academy of Sciences Committee, Washington, DC.

[10]  Parmenter, J. E., (2004) “The challenge of standoff explosives detection,” Proceedings of the 38th Annual
International Carnahan Conference on Security Technology, 355-358, IEEE: New York, NY.

[11] Schubert, H. and Rimski-Korsakov, A., (2005) “Standoff Detection of Suicide-Bombers and Mobile
Subjects,” Proceedings of the NATO Advanced Research Workshop on Standoff Detection of Suicide
Bombers and Mobile Subjects, NATO Security through Science Series B: Physics and Biophysics, Pfinztal,
Germany, Springer, Germany.

[12] Moore, D. S., (2004) Rev. Sci. Instrum. 75: 2499.

[13] Moore, D. S., (2007) Sens. Imaging, 8(1): 9.

ALERT 
Phase 2 Year 7 Annual Report 

Appendix A: Project Reports 
Thrust R3: Bulk Sensors & Sensor Systems 

Project R3-C

https://doi.org/10.1002/cem.3167


[14] Marshall, M., and Oxley, J. C., (2009) “Aspects of Explosives Detection,” Elsevier, Amsterdam, The
Netherlands.

[15]  Caygill, J. S., Davis, F., Higson, S. P. J., (2012) ‘‘Current Trends in Explosive Talanta. 2012. 88: 14-29.

[16] Tourné, M., (2013) J. Forensic Res. S12: 002.

[17] Fountain III, A. W. Christesen, S. D. Moon, R. P. and Guicheteau, J. A., (2014) Appl. Spectrosc. 68(8): 795.

[18] Faist, J., Capasso, F. Sirtori, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., Chu, S. G., and Cho. A.
Y. (1996) Appl. Phys. Lett. 68(26): 3680-3682.

[19] Capasso, F., Gmachl, C., Paiella, R., Tredicucci, A., Hutchinson, A. L., Sivco, D. L., Baillargeon, J., N. Cho,
A. Y. and Liu, H. C., (2000) IEEE J. Sel. Top. Quantum Electron. 6, 931.

[20] Gmachl, C., Capasso, F., Sivco, D. L. and Cho, A. Y., (2001) Rep. Prog. Phys. 64, 1533.

[21] Beck, M., et al., (2002) Science 295, 301.

[22]  Mizaikoff, B. and Lendl, B., (2002) “Sensor Systems Based on Mid-Infrared Transparent Fibers,” in
“Handbook of Vibrational Spectroscopy,” Chalmers, J. M. and Griffiths, P. R. Eds., Wiley, Chichester, West
Sussex, England, Vol. 2.

[23]  Deutsch, E. R., Kotidis, P., Zhu, N., Goyal, A. K., Ye, J., Mazurenko, A., Norman, M., Zafiriou, K., Baier,
M., Connors, R., (2014) Proc. SPIE. 2014. 9106 91060A-9.

[24]  Castro-Suarez, J. R., Pollock, Y. S. and Hernández-Rivera, S. P. (2013) Proc. SPIE. 8710: 871010-871010.

[25]  Suter, J. D., Bernacki, B., and Phillips. M. C., (2012) Appl. Phys. B: Lasers Opt. 108(4): 965–974.

[26]  Castro-Suarez, J.R., Hidalgo-Santiago, M., Hernández-Rivera, S.P., (2015) Appl. Spectrosc. 69(9): 1023-
1035.

[27]  Pushkarsky, M. B., Dunayevskiy, I. G., Prasanna, M., Tsekoun, A. G., Go, R. and Patel, C. K. N., (2006)
Proc. Natl. Acad. Sci. U.S.A. 2006. 103(52): 19630–19634.

[28]  Patel. C. K. N. (2009) Proc. SPIE. 7484: 748402.

[29]  Bauer, C., Willer, U. and Schade. W., (2010) Opt. Eng. 49(11): 111126-111126-7.

[30]  Pacheco-Londoño, L. C., Castro-Suarez, J. R. and Hernández-Rivera. S. P., (2013) Adv. Opt. Tech. 2013.
Article ID: 532670.

[31]  Van Neste, C. W. Senesac, L. R. and Thundat, T., (2009) Anal. Chem. 81, 1952-1956.

[32]  Hildebrand, J., Herbst, J., Wöllenstein, J. and Lambrecht. A., (2009) Proc. SPIE. 7222: 72220B.

[33]  Fuchs, F., Hugger, S., Kinzer, M., Aidam, R., Bronner, W., Losch, R. and Yang. Q., (2010) Opt. Eng.
49(11): 111127-111127-8.

[34]  Pacheco-Londoño, L.C., Castro-Suarez, J.R., Galán-Freyle, N.J., Figueroa-Navedo, A.M., Ruiz-Caballero,
J.L., Infante-Castillo, R., Hernández-Rivera, S.P.; “Mid-Infrared Laser Spectroscopy Applications I:
Detection of Traces of High Explosives on Reflective and Matte Substrates”, Chapter 2, pp. 11-34, DOI:
10.5772/intechopen.81923, in “Infrared Spectroscopy: Principles, Advances, and Applications” Ed. M. El-
Azary, IntechOpen, London, UK, 2019. ISBN: 978-1-78984-968-4; OnLine: 978-1-78984-969-1.

[35]  Pacheco-Londoño, L.C., Galán-Freyle, N.J., Padilla-Jiménez, A.C., Castro-Suarez, J.R., Figueroa-Navedo,
A.M., Ruiz-Caballero, J.L., Infante-Castillo, Rios-Velazquez, C. Hernández-Rivera, S.P. “Mid-Infrared
Laser Spectroscopy Applications in Process Analytical Technology: Cleaning Validation, Microorganisms,
and Active Pharmaceutical Ingredients in Formulations”, Chapter 3, pp. 35-57, DOI:

ALERT 
Phase 2 Year 7 Annual Report 

Appendix A: Project Reports 
Thrust R3: Bulk Sensors & Sensor Systems 

Project R3-C



10.5772/intechopen.82402, in “Infrared Spectroscopy: Principles, Advances, and Applications” Ed. M. El-
Azary, IntechOpen, London, UK, 2019. ISBN: 978-1-78984-968-4; OnLine: 978-1-78984-969-1. 

[36]  Gallagher, N. B., Blake, T. A., Gassman, P. L., Shaver, J. M., Windig, W., Appl. Spectrosc., (2006) 60(7):
713-722.

[37]  Pacheco-Londoño, L.C., Aparicio-Bolaño, J.A., Galán-Freyle, N.J., Román-Ospino, A.D. and Hernandez-
Rivera, S.P., App. Spectrosc., (2019) 73(1) 17-29 DOI 10.1177-0003702818780414.

[38] Pacheco‐Londoño, L. C.; Galán‐Freyle, N. J.; Figueroa‐Navedo, A. M.; Infante‐Castillo, R.; Ruiz‐Caballero,
J. L.; Hernández‐Rivera, S. P. Quantum Cascade Laser Back‐reflection Spectroscopy at Grazing‐angle
Incidence Using the Fast Fourier Transform as a Data Preprocessing Algorithm. J. Chemom. 2019, 33 (9).
https://doi.org/10.1002/cem.3167.

[39]  Yeh, K. Bhargava, R., Mahadevan-Jansen, A., Petrich, W., Eds.; 2016; p 970406.
https://doi.org/10.1117/12.2230003.

[40]  Morales-Rodríguez, M. E. McFarlane, J. Kidder, M. K. Int. J. Anal. Chem. 2018, 2018, 1–9.
https://doi.org/10.1155/2018/7896903.

[41]  Schwaighofer, A., Montemurro, M., Freitag, S., Kristament, C., Culzoni, M. J., Lendl, B. Anal. CHEs. 2018,
acs.analcHEs.8b01632. https://doi.org/10.1021/acs.analcHEs.8b01632.

ALERT 
Phase 2 Year 7 Annual Report 

Appendix A: Project Reports 
Thrust R3: Bulk Sensors & Sensor Systems 

Project R3-C

https://doi.org/10.1021/acs.analchem.8b01632
https://doi.org/10.1021/acs.analchem.8b01632



