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II.	 PROJECT DESCRIPTION 

A.	 Project Overview

As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes in-
creasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which em-
ploy multiple sensors to determine the presence of explosives on people are being developed. Their functions 
include observing and following individuals with intelligent video, identifying explosives residues or heat 
signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays [1, 
2], terahertz waves [3-5], neutron analysis [6, 7], or nuclear quadrupole resonance (NQR) [8, 9]. At present, 
radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters 
without causing physical harm. 
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The objective of this project is the hardware development and evaluation of an inexpensive, high-resolution 
radar that can distinguish security threats hidden on individuals at mid-ranges (2-10 meters) using an “On-
the-Move” configuration, and at standoff-ranges (10-40 meters) using a “van-based” configuration (Fig. 1).

B.	 State of the Art and Technical Approach

The outcome of this project would be the first inexpensive, high-resolution radar system with a special ap-
plication to detect and identify potential suicide bombers. Its uniqueness is based on the ability to work on 
multistatic configurations, in which the information from multiple receivers and transmitters are coherently 
combined by using a common local oscillator. This project has the potential to be the first radar system that 
is capable of functioning at multiple ranges for both indoor and outdoor scenarios. An analysis of the state of 
the art is incorporated into Section II.C.
Table 1 shows the algorithmic development road map, including the steps needed to go from a 3D mechanical 
scanning imaging system (Gen-1 [10]) to a 3D fully electronic scanning imaging system (Generation 3, Gen-3 
[11,12]). An intermediate imaging system (Gen-2), capable of imaging small targets in a fully electronic fash-
ion and large targets in a hybrid electrical/mechanical fashion, will be used for a smooth transition between 
the Gen-1 and Gen-3 imaging systems.

Figure 1: General sketch of the inexpensive, high-resolution radar system used for detecting security threats (a) at 
mid-ranges using an “on-the-move” configuration, and (b) at standoff-ranges using a “van-based” configuration.
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The following activities were developed for this project: 1) Alternating Direction Method of Multipliers (AD-
MM)-based Compressive Imaging using synthetic and experimental data of the Gen-2 system and a potential 
Gen-3 system configuration (Tasks 2.4 and 3.4); 2) new Compressive Imaging Algorithms using synthetic 
data (Task 2.6); and 3) design of a high-capacity sensing system for Compressive Sensing (CS) imaging appli-
cations (Task 3.5). This project is intimately related to ALERT Project R3-B.1, “Hardware design for ‘Stand-
off’ and ‘On-the-Move’ Detection of Security Threats,” because it develops the imaging algorithms for the 
Project R3-B.1 hardware system. As a result of the ALERT Biennial Review conducted in March of 2018, this 
project was terminated and will not be funded in Year 6; however, aspects of this project will be merged into 
Project R3-B.1. Many of the technologies and techniques developed for this project are commonly used in 
near-field applications by other ALERT projects, including Projects R3-A.2 and R3-A.3.

C.	 Major Contributions

A summary of the Year 5 major contributions can be found in Table 2.

Table 1: Algorithmic development roadmap towards a fully electronic radar imaging system; from Gen-1 [10] to Gen-3 
[11, 12].
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D.	 Milestones

D.1.	 ADMM-based Compressive Imaging (Tasks 2.4 and 3.4)

The research on the ADMM-based algorithms continued this year, exploiting the separability of the objective 
function and exploring new regularization functions. Specifically, the use of the Elastic Net regularization, 
which is a combination of the norm-1 and norm-2 regularizations, allows for a sparse solution while mini-
mizing the risk of error. This has been proven to be very efficient when dealing with noisy data. Furthermore, 
exploiting the distributed capabilities of the ADMM, the analysis of the division of the sensing matrix of the 
system by rows and columns has been carried out, leading to the consensus and sectioning-based ADMM. 
Dividing the sensing matrix by rows accelerates the imaging process, and dividing the sensing matrix by 
columns reduces the amount of information that is required to be shared among the computational nodes. 
Finally, the ADMM compressive imaging has been tested with real data.

D.1.a.	 ADMM-based Imaging Using Joint Elastic Net Regularization

The main advantage of the ADMM resides in its property of separating the objective and the regularization 
terms in different variables and optimizing them in an alternative fashion. This fact allows for the use of 
diverse regularizations with just simple variation in the standard algorithm schemes. The Elastic Net regu-
larization, a combination of the norm-1 and norm-2 regularizations, is a clear example of that. This regular-
ization is expressed in the following form:

where the parameter α weights between the norm-1 regularization only (α = 0) and the norm-2 regulariza-
tion only (α = 1). This enables the possibility of finding many other solutions different from the sparsest or 
the minimum energy solutions. Figure 2 represents graphically a 2D example of this.

Table 2: Summary of this year’s major contributions.

(1)
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Given the linear problem 

where g ∈ �Nm is the vector of measurements, H ∈ �Nm×Np is the sensing matrix, w ∈ �Nm represents the noise 
collected by the receiver, and u ∈ �Np is the unknown complex vector; the Elastic Net regularization consen-
sus ADMM problem is defined as follows:

where H i are row block submatrices of the sensing matrix H, and g i are subvectors of g. The variables u i are 
copies of the unknown vector u, which are used for solving the problem for each H i and g i. The constraint 
forces that all partial solutions agree through the variable v. 
This problem is solved by the following iterative scheme: 

where ρ is the augmented parameters, St(a) is the soft-thresholding operator, and s i
k+1 is the dual variable at 

iteration k+1. Notice that these equations are very similar to the simple norm-1 regularized consensus-based 
ADMM. The only difference appears in the solution of the consensus variable v. Now this variable combines 
the shrinkage properties of both norm-1 and norm-2 regularization, depending on the value of α. On one 

Figure 2: Optimal solutions for norm-1, norm-2, and Elastic Net regularization in a 2D example.

(2)

(3)

(4.a)

(4.c)

(4.b)
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hand, the soft-thresholding operator forces small input values to be zero, due to the norm-1 regularization. 
On the other hand, the non-zero output values are decreased due to the norm-2 regularization. Figure 3 rep-
resents graphically this double shrinkage.

D.1.b.	 Consensus and Sectioning-based ADMM Using Rows and Columns Division of the Sensing Matrix 

The consensus-based ADMM has been proven to accelerate the convergence and perform imaging in quasi 
real-time by diving the sensing matrix by rows and optimizing different replicas of the unknown vector in 
parallel with less data for each one [12, 13], but it has the drawback of slow communication among the com-
putational nodes, since the whole imaging vector needs to be transmitted at each iteration. This problem has 
been addressed by dividing the sensing matrix in columns instead of rows. In this way, the amount of infor-
mation to be transmitted among the nodes is drastically reduced. This idea led to sectioning the imaging do-
main in several sub-regions and optimizing them independently, sharing small pieces of information at each 
iteration. Combining both techniques, a parallel and distributed algorithm with a reduced communications 
among the computational nodes is achieved.
Considering the same problem as in Equation (2), let us divide the sensing matrix into M row block and N 
column block sub-matrices, as shown in Figure 4.

Figure 3: Graphical representation of the weighted soft-thresholding operator in terms of the parameter α.

Figure 4: Representation of the division of the matrix sensing system by rows and by columns.
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The problem to solve is now of the following form:

where  is the i-th replic of the j-th sub-vector of the unknown vector . The solution of this optimization prob-
lem is given by the following iterative scheme:

and  and  are the mean of  and , respectively, for all replicas i of a given segment 
j, at iteration k+1.
This problem splits the imaging domain in several regions (division by columns) and then, for each one, some 
replicas are created (division by rows) and optimized independently, as shown in Figure 5. Figure 6 shows 
the architecture of the computational nodes distribution and their connections.

(5)

(6.a)

(6.b)

(6.c)

(6.d)

where

Figure 5: Graphical interpretation of the division by rows and columns. The image is sectioned into N regions, and each 
of them are replicated M times for performing the imaging with few data allocated to each node. The solution for each 
region is an average-like of all the replicas. The final imaging solution is the concatenation of all the regions.
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In terms of the communications among the computational nodes, Figure 7 shows a comparison among the 
consensus-based (division by rows), the sectioning-based (division by columns), and the consensus and sec-
tioning-based ADMM algorithms, meanwhile Table 3 shows the amount of elements that need to be inter-
changed by one node at each iteration.

Figure 6: Architecture of the consensus and sectioning-based ADMM. The problem is split into N nodes, each of them 
acting as a central node that collects the updates of M sub-nodes, computes the soft-thresholding operator of the 
mean of them, and then distributes the solution again to the sub-nodes. Each sub-node shares, for each iteration, 
a small vector dependent on their local optimization with the remaining sub-nodes that correspond with the same 
replica.

Figure 7: Schematic representation of the vectors and their lengths that are received from and transmitted by one 
single node at iteration k when the sensing matrix of the problem is divided in submatrices (a) by rows, (b) by columns, 
and (c) by both rows and columns.
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Therefore, depending on the known ratio  between the number of pixels in the imaging domain 
and the number of measurements, selecting one or other techniques will be more efficient in terms of com-
munications among the computational nodes. The graphics plotted in Figure 8 compare these techniques for 
different values of the parameter R.

Table 3: Number of elements to be shared for one single node at one iteration for the three ADMM distributed tech-
niques.
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Figure 8: (a) Column-wise division vs. row-wise division. Dividing the sensing matrix in submatrices by columns is more 
efficient, in terms of communications among nodes, than dividing it by rows for the integer and positives values of N 
that fall in the area indicated by the arrows, given R. (b) Row and column-wise division vs. row-wise division. Dividing 
the sensing matrix in submatrices by rows and columns is more efficient, in terms of communications among nodes, 
than dividing it by rows only for the integer and positive values of M and N that fall in the area indicated by the arrows, 
for a given ratio R. (c) Row and column-wise division vs. column-wise division. Dividing the sensing matrix in submatri-
ces by rows and columns is more efficient, in terms of communications among nodes, than dividing it by columns only 
for the integer values of N and M that fall in the area indicated by the arrows, for a given ratio R. 
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D.1.c.	 Some Results of the ADMM-based Compressive Imaging Algorithms.

D.1.c.i.	 Simulated Data

The Elastic-Net regularized ADMM has been tested in a problem of source reconstruction [14]. Five point 
sources of unit value are located in a  square normalized over the wavelength λ0 and NRx receivers are placed 
in a circular position of radius 10, with and angular separation of  as shown in Figure 9. The mea-
sured field is described by the following equation:

where  and dnm is the distance between the n ⎯ th pixel and the m ⎯ th receiver. Figure 10 shows the 
reconstruction error for different number of receivers for a sparsivity level of S = 5 when varying the param-
eter α (from norm-1 to norm-2 regularization), for a SNR = 50dB. It can be seen that the minimum error is 
obtained for an intermediate value of α, as is also shown in Figure 11.

(7)

Figure 9: System configuration. Yellow points represent the sources over the dark blue square region of interest. Red 
circles represent the receivers. All distances are normalized by the wavelength λ0.
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Figure 10: Reconstruction error varying the parameter α for different number of receivers with a SNR=50dB.

Figure 11: Source reconstruction and error when applying the Elastic Net regularized ADMM for different values of the 
parameter α.
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The consensus and sectioning-based ADMM was tested via a mm-wave imaging application, through the 
use of two compressive reflector antennas, according to the structure described in Figure 12. Having 12 
transmitters and 12 receivers and employing 15 frequencies in the 70-77GHz band, the total number of mea-
surements is Nm = 2160 for imaging a 3D structure containing Np = 22500 pixels. The results, when dividing 
the sensing matrix in  M= 4 row blocks and N = 3 column blocks, are presented in Figure 13. Table 4 shows 
the amount of information to be shared by one single node at each iteration, being clear how the sectioning 
(division by columns) and consensus and sectioning-based (division by rows and columns) ADMM highly 
reduces this amount compared to the consensus-based ADMM (division by rows). The consensus and sec-
tioning-based ADMM produces a good quality imaging with a reduced amount of information required to be 
shared among the computational nodes.

Figure 12: (a) Geometry of the sensing system. A vertical array of transmitters feed one CRA that illuminates the im-
aging domain. The field scattered by the targets is reflected by another CRA and measured by a horizontal array of 
receivers. (b) Top view of the sensing system. The faded CRAs and arrays of Tx and Rx indicate their position before 
tilting. The green CRA is tilted θt degrees in the +ŷ direction, and the orange CRA is tilted θt degrees in the -ŷ direction.
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D.1.c.ii.	 Real Data	

The ADMM algorithm has been tested in real data collected in the actual configuration of the radar in our 
laboratory. A person with a metallic box concealed under its clothes is being imaged by the radar. After the 
measurements are collected, the ADMM algorithm is applied for each time frame, identifying the range of 
the metallic box and some parts of the human body. The imaging is performed by adding in magnitude the 
imaging of 10 consecutive frames. Figure 14 shows the imaging performed at one instant for different ranges, 
perfectly identifying the position of the metallic box. When these results are fused with the information taken 
from optical cameras like the Kinect, which can identify the range of the objects they are observing, the mm-
wave imaging results can be refined,  This is done by performing the imaging starting from the point at which 
the Kinect has identified the person that is walking. In this way, some energy is saved since only a small area 
is imaged; the imaging time is reduced, since less data is required; and we can get rid of possible artifacts that 
may appear in front of the person. The imaging with the ADMM can be done in just 0.3 seconds for each time 
frame. Placing the imaging results for each time frame, a 3D video can be created representing the mm-wave 
reflectivity and the depth of the target imaged. Figure 15 plots one frame of these videos.

Figure 13: Imaging reconstruction (top, front, and side views) using (a) Consensus-based ADMM, (b) Sectioning-based 
ADMM, (c) Consensus and Sectioning-based ADMM. The targets are represented with transparent black triangles and 
the reconstructed reflectivity is presented in the colored map.

Table 4: Amount of information to be shared by one single node at each iteration.
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Figure 14: Imaging per range for one time frame with ADMM. The metallic box is perfectly defined and some parts of 
the human body behind the target. Other artifacts appear in front of the target, probably due to some reflection of the 
clothes and/or the hands that hold the metallic box for the experiment.

Figure 15: One time frame of the 4D (3 spatial dimension plus time) reconstructed imaging once the front layers have 
been removed after applying the a priori information provided by the Kinect with normalized reflectivity (left) and 
range position (right).
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D.2.	 New Compressive Imaging Algorithms (Task 2.6).

In last year’s report, we described how the success of Compressive Sensing (CS) techniques largely depend 
upon the properties of the sensing matrix A, and how the most commonly used performance metric, the Re-
stricted Isometry Property (RIP), is not suitable for many real-world applications, such as electromagnetic 
imaging. To overcome this challenge, we developed a novel sensing matrix design method based upon mutual 
coherence minimization [15] and presented some numerical results that demonstrate the method’s capabili-
ties. Since then, we have developed an enhanced method that can be applied to block CS applications [16-17].

D.2.a.	 Sensing Matrix Design via Capacity Maximization for Block Compressive Sensing Applications 

Block CS generalizes standard CS for applications in which the unknown signal of interest is known to exhibit 
block, or group sparsity. The concept of block sparsity can be simply described by Figure 16, which displays 
two different signals with sparsity S = 4. The block sparsity of these signals can be evaluated by first grouping 
the individual elements into blocks and then counting how many blocks have non-zero elements. For exam-
ple, if we group samples zero and one together, then two and three, etc., for a total of four groups, the signal 
on the left has a group sparsity of three and the signal on the right has a group sparsity of two. Specialized 
reconstruction techniques that exploit group sparsity (such as joint ℓ2 /ℓ1 minimization) have been shown to 
provide better reconstruction performance than standard CS techniques (such as ℓ1 minimization). Unsur-
prisingly, the success of specialized block CS reconstruction techniques can be assessed using extensions to 
the RIP.

Our sensing matrix design method considers the problem of sensing matrix design from the perspective 
of information theory, and is formally expressed as follows. Suppose that the sensing matrix A ∈ �M×N is 
assumed to be a function of design variables p ∈ �L according to the possibly nonlinear, but differentiable 
relationship A = F( p). The design algorithm then seeks the minimizer of the following optimization program:

Figure 16: Two signals with sparsity S = 4, but different block sparsity based upon the grouping.

(8)
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where Φr are sub-sampling matrices that extract the elements for the R different groups and Qp defines the 
feasible set of values that  can take. This is a nonlinear, non-convex problem, which can be solved using the 
Augmented Lagrangian method. In laymen’s terms, the optimization problem maximizes the smallest capac-
ity of sub-matrices obtained by selecting columns from the full sensing matrix. For a sensing matrix that is 
used to reconstruct a SB block-sparse signal, where each block has L values, the algorithm can theoretically 
be configured to optimize over all � � sub-matrices of size M × 2L to establish reconstruction guarantees 
using the block RIP. Unfortunately, this is not feasible in practice even for moderately sized problems. In many 
problems though, the algorithm can be applied over all �N/L

2  � sub-matrices of size M × 2L to enhance recon-
struction accuracy.
To assess the capabilities of the capacity maximization design method, let us reconsider the design applica-
tion described in last year’s report. Consider an imaging system in which a single transmitting and receiving 
antenna is used to excite a region of interest with a single frequency. This antenna was constrained to operate 
at  positions within a 5λ × 5λ grid located a distance of 5λ away from the imaging region. The unknown sig-
nal of interest was known to lie within nine blocks, denoted by the shaded regions in Figure 17, which was 
discretized into 144 points (nine four by four blocks). The objective of the design problem was to select the 
locations that the antenna would operate at. Figure 17 displays the locations that the antenna operated at for 
the baseline design (blue) and the optimized design (red). Over the  possible combinations of 
blocks, the original randomized sensing matrix has a minimum capacity of -12.6, while the optimized sensing 
matrix has a minimum capacity of -3.6. This led to a direct improvement in reconstruction accuracy, as can 
be seen in Figure 18, which displays the reconstruction accuracies of the baseline random design (blue) and 
optimized design (red) when joint ℓ2 /ℓ1 (block CS) and standard ℓ1 techniques are applied.

Figure 17: Antenna positions of the baseline (blue) and optimized (red) designs. The shaded boxes in the background 
represent the squares on which the capacity was evaluated.
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D.3.	 Design of High-capacity Sensing System for CS Imaging Applications (Task 3.5)

D.3.a.	 Compressive Imaging of Extended Human-size Regions Using an Array of CRAs.

As an example of the high-capacity sensing systems, an MMA-based CRA array made of eight compressive 
reflectors is designed, in order to be able to have a walk-through system for imaging an extended human-size 
region. As depicted in Figure 19, the CRA is manufactured by introducing a set of discrete applique scatterers 
on the surface of a traditional reflector antenna (TRA). Each CRA is illuminated with an array of transmitting 
and receiving antennas located on the focal plane. The electromagnetic cross-coupling between adjacent 
CRAs is used in order to enhance the sensing capacity of the system, as well as to extend the region that it 
can image. The proposed millimeter-wave sensing and imaging system is composed of eight CRAs positioned 
at sides of the walk through system, as shown in Figure 20a. The 3D human model was projected into a 2D 
plane located 2 m away from the focal plane. The coding mechanism of the CRAs relies on two principles: (1) 
spatial coding of the electromagnetic field, generated by introducing discrete PEC scatterers on the surface 
of a TRA and (2) spectral coding of electromagnetic fields, generated by 8-bit MMAs, tailored on the surface 
of the reflector.

Figure 18: Numerical comparisons of the reconstruction accuracies of joint ℓ2 /ℓ1 (block CS) and standard ℓ1 techniques 
using the baseline random and optimized designs.
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Figure 19: 2D cross-section of a Traditional Reflector Antenna (x > 0) and Compressive Reflector Antenna (x < 0).

Figure 20: (a) CRA array for imaging a human model; (b) a single CRA in offset mode (left) with the 8-bit MMAs tailored 
on the surface of the CRA (right).

ALERT  
Phase 2 Year 5 Annual Report

Appendix A: Project Reports 
Thrust R3: Bulk Sensors & Sensor Systems 

Project R3-B.2



Each CRA is illuminated with two orthogonal receiving (Fig. 21a) and transmitting (Fig. 21b) arrays locat-
ed on the focal plane of the reflector. The electromagnetic cross-coupling between adjacent CRAs was used 
to perform the imaging. Given the location of the target with respect to the array, only the electromagnetic 
cross-coupling between CRA-l and CRA-k: (l=1,k=2), (l=3,k=4), (l=5,k=6), (l=7,k=8), (l=1,k=4), (l=3,k=6) and 
(l=5,k=8) is considered.

The design parameters for each one of the reflectors are shown in Table 5. Both the vertical receiving array 
(Fig. 21a) and the horizontal transmitting array (Fig. 21b) of each CRA consist of eight uniformly distributed 
conical horn antennas. With a similar procedure explained in Section E.3.a (“Design of a Compressive Reflec-
tor for Enhancing the Sensing Capacity”) of last year’s report, an 8-bit binary code ci = a1 ... a8 (i ∈ {1, ...,256}) 
is associated to each MMA design. Each digit of the binary code aj ∈ {0,1} (j ∈ {1, 2, ...,8}) is associated with 
a resonance frequency fj . The eight resonant frequencies are uniformly selected within the 67.375 GHz to 
79.625 GHz frequency band. The reflector’s surface is divided into 28 = 256 sub-surfaces and is randomly 
coated with the 256 different MMA configurations. In Figure 20b, each gray-scale color (rgb(i/2,i/2,i/2)) on 
the surface of the reflector represents a unique MMA configuration operating with the code ci. In Figure 22, 
the reflection coefficient and absorption value for eight different binary codes are plotted. Based on the res-
onance frequencies of the 8-bit MMAs, 66.5-80.5 GHz is selected to be the operational band of the radar and 
Nf = 87 regularly sampled frequencies are used to perform the imaging. 

Figure 21: (a) Array of receiving horn antennas feeding the CRA-2; and (b) array of transmitting horn antennas feeding 
the CRA-1.
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In this numerical example, the 8-bit MMAs are established in the frequency range of 66.5 GHz to 80.5 GHz, 
equivalent to a bandwidth of 19%, which is more than twice the bandwidth of the 4-bit MMA example pre-
sented in Section E.3.a of last year’s report. Nevertheless, there have been several efforts on extending the 

Table 5: Design parameters for a single CRA. 

Figure 22: Magnitude of reflection (|S11|) and absorption (1-|S11|2) of the MMA array for different binary codes: (a) c16 = 
00010000, (b) c32 = 00100100, (c) c73 = 01001001, (d) c85 = 01010101, (e) c107 = 01101011, (f) c231 = 11100111, (g) c223 = 
11011111, and (h) c255 = 11111111.
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local periodicity approach [18], which aim at expanding application scope of the method to the cases where 
the variations between the elements are not smooth. As it can be seen from the results in [18], in such cases 
the deviations and inaccuracies predominantly occur at the side lobes while the predictions of local periodic-
ity for the main lobe remains accurate. In the case of this example, there is not much concern about the side 
lobes and they do not play a major role in the near-field sensing, which makes effective medium approach 
valid, even if the variations between the adjacent elements are not very smooth.
Figure 23a shows the improved SV distribution of the single MMA-based CRA, when compared to that of the 
CRA without MMAs and a TRA. Also, Figure 23b shows how the sensing capacity of the CRA is enhanced for 
different SNR levels. The image reconstruction is performed using the MATLAB toolbox NESTA [19] imposing 
norm-1 regularization priors. The imaging result of the CRA with and without the 8-bit MMAs are plotted in 
Figure 24.

Figure 23: Comparison of (a) the normalized SV distribution and (b) the sensing capacity of a single CRA and TRA.

ALERT  
Phase 2 Year 5 Annual Report

Appendix A: Project Reports 
Thrust R3: Bulk Sensors & Sensor Systems 

Project R3-B.2



To justify the improvement of the MMA-based CRA compared to that of the CRA without the MMAs, the im-
aging accuracy for both configurations are quantitatively measured and then compared to each other. Figure 
25a shows the original target mask that needs to be reconstructed. In Figures 25b and 25c, the reconstructed 
images above a threshold level of -16 dB are represented for the CRA and MMA-based CRA configurations, 
respectively. In Figures 25d and 25e, the wrong reconstructed areas (red color) and correct reconstructed 
areas (light blue color) are represented for the CRA and MMA-based CRA configurations. The accuracy of the 
imaging is calculated as the number of correct reconstruction pixels divided by the total number of pixels in 
the imaging domain. The wrong reconstructions could be either a point in the target domain that is detected 
with a reflectivity level smaller than -16 dB or a point outside the target domain that has been detected with a 
reflectivity level higher than -16 dB. The accuracy for the CRA configuration and MMA-based CRA configura-
tions are calculated to be 88.74% and 92.46%, respectively, which shows the effectiveness of the established 
MMAs in the imaging system. 

Figure 24: Reconstructed image using iterative compressive sensing algorithm (NESTA) for the (a) CRA and (b) MMA-
based CRA arrays.
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Finally, this improvement will be even more evident for a target that is less sparse than that used in Figure 
24 under a Total Variation Norm metric. Specifically, as shown in Figure 23, for a SNR=50 dB, the MMA-based 
CRA has about 30% more singular values above the noise level than the simple CRA; so considering a typical 
value on the minimum number of measurements “m” needed to reconstruct an “s”-sparse signal to be m=4s, 
then the MMA-based CRA should be able to reconstruct signals of sparsity sCRA/MMA = 1000, while the CRA will 
only be able to reconstruct signals with sparsity sCRA = 750.

E.	 Future Plans

As a result of the ALERT Biennial Review conducted in March of 2018, this project was terminated and will 
not be funded in Year 6; however, aspects of this project will be merged into Project R3-B.1. Our future plans 
for these aspects are outlined below and in the report for Project R3-B.1.
•	 ADMM-based Compressive Imaging. For the next few years, the follow-on tasks and expected outcomes 

are the following:
○○ Task 3.4 (Year 6 and beyond) – Test and validate the algorithm in the Gen-3 system using multiple 

CRAs. The expected outcomes are a) validation of the algorithm in 3D with synthetic and experimen-
tal data of multiple CRAs. 

•	 Design of a high-capacity sensing system for CS imaging applications. For the next few years, the fol-
low-on task and expected outcome are the following:

○○ Task 3.5 (Years 6, and beyond) – Extend the design of the high-capacity sensing compressive reflector 
to 3D. The expected outcome is the design and experimental validation of a 3D Gen-3 system present-
ing maximum sensing capacity.  

Figure 25: (a) Original target. Reconstructed image above the -16 dB threshold for the (b) CRA, and (c) MMA-based CRA 
configurations. Image reconstruction error (red color) for the (d) CRA, and (e) MMA-based CRA configurations.
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•	 Accelerating Compressive Imaging using multistatic FFT (including non-uniform FFT). For the next few 
years, the follow-on tasks and expected outcomes are the following:

○○ Task 3.6 (Year 6 and beyond) – Test and validate the algorithm in the Gen-3 system. The expected 
outcome is the validation of the algorithm in 3D with experimental data.

•	 Automatic target detection using Deep Learning. For the next few years, the follow-on tasks and expected 
outcomes are the following:

○○ Task 3.7 (Year 6 and beyond) – Create a database of different examples of targets and perform their 
reflectivity reconstruction via mm-wave imaging with the Gen-3 system that could serve for training 
and optimizing a Convolutional Neural Network (CNN) for automatic target detection. The expected 
outcomes are a) several mm-wave reconstruction images of a variety of metallic and no metallic tar-
gets with different shapes and locations; and b) a dataset of labels corresponding to these images, 
which can be used for training and optimizing a CNN, in order to perform automatic target detection.

III.	 RELEVANCE AND TRANSITION

A.	 Relevance of Research to the DHS Enterprise

The following features will be of special relevance to the Department of Homeland Security (DHS) enterprise:
•	 Non-invasive, minimally-disruptive “On-the-Move” scanning with quality imaging and high throughput; 

fast data collection in less than 10ms.
•	 Full body imaging with interrupted forward movement during mm-wave pedestrian surveillance; in 

multi-view. 
•	 A small number of non-uniform sparse array of Tx/Rx radar modules will minimize the cost of on-the-

move; five transmitters +five receivers + 10 switches.

B.	 Potential for Transition

The features of “On-the-Move” have attracted the attention of several industrial and government organiza-
tions. 
•	 Industrial transition partners: HXI, Inc., L3 Communication, Rapiscan, and Smiths Detection.
•	 Target government customers: Transportation Security Administration (TSA), the U.S. Department of 

Justice (DOJ), Customs and Border Protection (CBP), and the Department of State.

C.	 Data and/or IP Acquisition Strategy

The hardware and algorithmic design, integration, and validation performed under this project will contin-
ue to generate IP. In the past, several provisional patents have been submitted to Northeastern University’s 
(NEU) IP office, and our connection with different transition partners will facilitate its transition into indus-
try. Moreover, the hardware will also be used to create benchmark datasets that may be used by industry 
stakeholders in order to assess the performance of their reconstruction/imaging algorithms. Moreover, a 
patent was awarded in Year 4 (February 21, 2017) based on the work partially done in this project: U.S. 
Patent 9,575,045, “Signal Processing Methods and Systems for Explosives Detection and Identification Using 
Electromagnetic Radiation.” 

D.	 Transition Pathway 

HXI Inc. has been collaborating with our Project R3-B.1 research team. Together, HXI and ALERT have  
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designed, fabricated, integrated, and validated the radar system. We expect that after the assembling the first 
Gen-3 prototype, HXI will license our IP and transition the technology to the mm-wave imaging market.  Ad-
ditionally, new low-cost miniaturized modules are being developed by HXI for the next generation mm-wave 
system; some of these components will be tested by the Project R3-B.1 PI.  
The PI has also established a working relationship with Smiths Detection and L3 Communications, which 
bodes well for future collaboration and transition. 

E.	 Customer Connections

Customer Names & Program Offices:
•	 HXI – Mr. Earle Stewart
•	 Smith’s Detection Systems – Dr. Kris Roe 
•	 L3 Communications– Dr. Simon Pongratz
Frequency of Contact & Level of Involvement in Project: 
•	 The PI has weekly meetings with HXI for the project.  
•	 The companies Smiths Detection and L3 Communications had 3 to 4 meetings with the PI last year.       
New proposals related to the topic of this research will be submitted to other federal funding agencies. 

IV.	 PROJECT ACCOMPLISHMENTS AND DOCUMENTATION

A.	 Education and Workforce Development Activities

1.	 Course, Seminar, and/or Workshop Development
a.	 Prof. Martinez-Lorenzo was invited to give a talk entitled “High Capacity and Efficiency Opti-

mization of Compressive Antennas for Imaging Applications” at the Special Session “Inverse 
Problems: Theory, Techniques, and Applications,” of the European Conference on Antennas and 
Propagation. London, UK (April 2018). This talk covered several results generated by Projects 
R3-B.1 and R3-B.2.

2.	 Student Internship, Job, and/or Research Opportunities
a.	 Graduate students, Chang Liu, Ali Molaei, Luis Tirado, and Weite Zhang play an important role 

in our research project. They will continue to assist in the development of new hardware design 
and integration for the mm-wave radar system.  

b.	 Our undergraduate students, Anthony Bisulco, Christopher Gehrke, Katherine Graham, and Jo-
seph Von Holten, will continue to work on Projects R3-B.1 and R3-B.2. 

3.	 Interactions and Outreach to K-12, Community College, and/or Minority Serving Institution Stu-
dents or Faculty
a.	 The PI participated in the Building Bridges Program, which provides opportunities for high 

school students to visit NU’s laboratories and gain hands-on research experience in order to 
engage them in STEM education.

b.	 The PI participated in the Young Scholars Program at Northeastern University, in which two high 
school students spent 6 weeks in Prof. Martinez’s lab learning about sensing and imaging. 

4.	 Other Outcomes that Relate to Educational Improvement or Workforce Development
a.	 Populating the research group with undergraduates brings homeland security technologies to 
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undergraduate engineering students, and establishes a pipeline to train and provide a rich pool 
of talented new graduate student researchers.

B.	 Peer Reviewed Journal Articles 

1.	 Molaei, A., Heredia Juesas, J., Blackwell, W.J., & Martinez-Lorenzo, J.A. “Interferometric Sounding Us-
ing a Metamaterial-Based Compressive Reflector Antenna.” IEEE Transactions on Antennas and Prop-
agation, 66(5) pp. 2188-2198, 2018. DOI: 10.1109/TAP.2018.2809488

2.	 Molaei, A., Heredia-Juesas, J., Ghazi, G., Vlahakis, J., & Martinez-Lorenzo, J.A. “Digitized Metama-
terial Absorber-based Compressive Reflector Antenna for High Sensing Capacity Imaging.” arX-
iv:1806.06934.

3.	 Tirado, L., Ghazi, G., Alvarez-Lopez, Y., Las-Heras, F., Martinez-Lorenzo, J.A. “A GPU Implementation of 
the Inverse Fast Multipole Method for Multi-Bistatic Imaging Applications.” Progress in Electromag-
netics Research M, Vol. 58, 159-169, 2017. DOI: 10.2528/PIERM17021004

Pending-
1.	 Molaei, A., Bisulco, A., Tirado, L., Zhu, A., Cachay, D., Ghanbarzadeh Dagheyan, A., & Martinez-Loren-

zo, J.A. “3D Printed E-Band Compressive Horn Antenna for High-sensing-capacity Imaging Applica-
tions.” IEEE Antennas and Wireless Propagation Letters (under review).

2.	 Molaei, A., Tirado, L., Bisulco, A., Gehrke, C., Zhu, A., & Martinez-Lorenzo, J.A. “3D Printed Conical 
Horn Antenna Equipped with Orbital Angular Momentum Lenses for High-Capacity Millimeter-wave 
Applications.” IEEE Antennas and Wireless Propagation Letters (under review).

3.	 Obermeier, R. & Martinez-Lorenzo, J.A. “Sensing Matrix Design via Capacity Maximization for Block 
Compressive Sensing Applications.” IEEE Transactions on Computational Imaging (under review).

4.	 Heredia-Juesas, J., Molaei, A., Tirado, L., & Martinez-Lorenzo, J.A. “Sectioning-based ADMM Imaging 
for Fast Node Communication with a Compressive Antenna.” IEEE Antennas and Wireless Propaga-
tion Letters (under review).

C.	 Peer Reviewed Conference Proceedings

1.	 A. Molaei, J. Heredia-Juesas, L. Tirado, W. Zhang, A. Bisulco, A. Zhu, D. Cachay, A. Ghanbarzadeh Da-
gheyan, J. Martinez-Lorenzo, “3D Printed Compressive Horn Antenna for High-Sensing-Capacity Mil-
limeter-Wave Imaging”, CD Proc., EuCAP 2018 — XII European Conference on Antennas and Propa-
gation, London, UK, April, 2018.

2.	 J.A. Martinez-Lorenzo and R. Obermeier, “High Capacity and Efficiency Optimization of Compressive 
Antennas for Imaging Applications”, CD Proc., EuCAP 2018 — XII European Conference on Antennas 
and Propagation, London, UK, April, 2018.

3.	 Molaei, Ali, et al. “A bilayer ELC metamaterial for multi-resonant spectral coding at mm-Wave fre-
quencies.” AP-S 2017—Antennas and Propagation & USNC/URSI National Radio Science Meeting, 
2017 IEEE International Symposium on. IEEE, San Diego CA, July 2017.

4.	 A. Molaei, J. Heredia Juesas, and J. Martinez-Lorenzo. “Single-pixel mm-wave imaging using 8-bits 
metamaterial-based compressive reflector antenna.”  AP-S 2017—Antennas and Propagation & 
USNC/URSI National Radio Science Meeting, 2017 IEEE International Symposium on. IEEE, San Di-
ego CA, July 2017.

Pending – 
1.	 Obermeier, R., & Martinez-Lorenzo, J.A. “A Capacity-based Sensing Matrix Design Method for Block 
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Compressive Imaging Applications.” AP-S 2018—IEEE AP-S International Symposium – URSI, Bos-
ton, MA, July 2018 (accepted, to be presented).

2.	 Zhang, W., & Martinez-Lorenzo, J.A. “Single-frequency Material Characterization Using a Microwave 
Adaptive Reflect-array.” AP-S 2018—IEEE AP-S International Symposium – URSI, Boston, MA, July 
2018 (accepted, to be presented).

3.	 Molaei, A., & Martinez-Lorenzo, J.A. “Waveguide-fed Antipodal Vivaldi Antenna using an Antipodal 
Finline Transition.” AP-S 2018—IEEE AP-S International Symposium – URSI, Boston, MA, July 2018 
(accepted, to be presented).

4.	 Molaei, A., & Martinez-Lorenzo, J.A. “A Low Cost Reflect Array for Near-field Millimeter-Wave Beam 
Focusing Applications.” AP-S 2018—IEEE AP-S International Symposium – URSI, Boston, MA, July 
2018 (accepted, to be presented).

5.	 Molaei, A., Graham, K., Tirado, L., Ghanbarzadeh, A., Bisulco, A., Heredia-Juesas, J., Liu, C., Von Hol-
tenz, J., & Martinez-Lorenzo, J.A. “Experimental Results of a Compressive Reflector Antenna Produc-
ing Spatial Coding.” AP-S 2018—IEEE AP-S International Symposium – URSI, Boston, MA, July 2018 
(accepted, to be presented).

6.	 Heredia-Juesas, J., Tirado, L., & Martinez-Lorenzo, J.A. “Fast Source Reconstruction via ADMM with 
Elastic Net Regularization.” AP-S 2018—IEEE AP-S International Symposium – URSI, Boston, MA, 
July 2018 (accepted, to be presented).

7.	 Heredia-Juesas, J., Molaei, A., Tirado, L., & Martinez-Lorenzo, J.A. “Fast Node Communication AD-
MM-based Imaging Algorithm with a Compressive Reflector Antenna.” AP-S 2018—IEEE AP-S Inter-
national Symposium – URSI, Boston, MA, July 2018 (accepted, to be presented).

8.	 L. Tirado, W. Zhang, A. Bisulco, H. Gomez-Sousa, J.A. Martinez-Lorenzo, “Towards Three-dimensional 
Millimeter-Wave Radar Imaging of On-the-move Targets”, AP-S 2018—IEEE AP-S International Sym-
posium – URSI, Boston MA, July 2018. (accepted, to be presented).

D.	 Other Presentations 

1.	 Seminars
a.	 Martinez-Lorenzo, J.A. “High Capacity and Efficiency Optimization of Compressive Antennas 

for Imaging Applications.” European Conference on Antennas and Propagation. London, UK, 10 
March 2018. Invited talk. 

b.	 Martinez-Lorenzo, J.A. “Research at SICA-LAB: Sensing, Imaging, (AI)-Control, and Actuation 
Laboratory.” NU Meeting with Leddartech, Northeastern University, Boston, MA, 19 April 2018. 

c.	 Martinez-Lorenzo, J.A. “Imaging at Speed.” NU Meeting with Transportation Security Adminis-
tration Administrator David Pekoske, Northeastern University, Boston, MA, 18 May 2018.

d.	 Martinez-Lorenzo, J.A. “Research at the SICA-Lab.” NU-ALERT Research Experience for Under-
graduates, Northeastern University, Boston, MA, 4 June 2018.

e.	 Martinez-Lorenzo, J.A. “4D-Coded Compressive Systems for High-Capacity Sensing and Imaging.” 
ECE at Michigan State University, 04 June 2018.

f.	 Martinez-Lorenzo, J.A. “Next Generation Checkpoints for On-The-Move Threat Detection.” Ad-
vanced Development for Security Applications (ADSA) Workshop 18, Boston, MA, 15 May 2018.

2.	 Poster Sessions
a.	 Molaei, A., Graham, K., Heredia-Juesas, J., Tirado, L., Zhang, W., Bisulco, A., Liu, C., Von Holten, J., 

Zhu, A., Cachay, D., Ghanbarzadeh Dagheyan, A., & Martinez-Lorenzo, J.A. “Compressive Antennas 
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for High-Sensing Capacity Imaging Applications.” RISE 2018, Northeastern University, Boston, 
MA, 5 April 2018.

b.	 Tirado, L., Zhang, W., Molaei, A., Bisulco, A., Gomez-Sousa, H., & Martinez-Lorenzo, J.A. “Three-di-
mensional On-the-Move Imaging Using a Millimeter-Wave CRA.” RISE 2018, Northeastern Uni-
versity, Boston, MA, 5 April 2018.

3.	 Interviews and/or News Articles 
a.	 Research featured by News@Northeastern. (May, 2018). “The next update to TSA checkpoints 

could start at Northeastern: David Pekoske visits SICA-LAB.” https://news.northeastern.
edu/2018/05/18/the-next-update-to-tsa-checkpoints-could-start-at-northeastern/ 
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