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Abstract

We present a method for jointly learning r > 1 similar classification tasks. Our method builds
upon a regularization problem using two regularizers which control the underlying structure of the
model from completely unrelated tasks to practically the same tasks. We show that this problem
is equivalent to a convex optimization problem.

Introduction

I In real life many learning tasks are related
I Similarity among the tasks can improve learning efficiency and accuracy
I Example: Many personality disorders share almost the same set of symptoms with different

severity
PTSD SAD PPD AvPD PMD

Irritability ? ? F ? ?
Anhedonia 0 0 0 0 F
Hyper/Insomnia F F ? ? ?
Change of appetitie 0 ? 0 0 0

Table: Mental Disorders and 3-level Symptoms Importance , PTSD Posttraumatic Stress Disorder SAD:
Seasonal Affective Disorder, PPD:Paranoid Personality Disorder, AvPD: Avoidant Personality Disorder, and
PMD: Psychotic Major Depression

Problem Setup

I Consider the problem of learning r related classification tasks.
I xi ∈ Rp is the vector of features, and yi ∈ Rr is the vector of labels corresponding to each task.
I We are given a set of n data samples (xi, yi) represented as:

X =

 x1
T

...
xnT

 , Y =

 y1
T

...
ynT


I Our goal is to find a mapping f : Rp 7→ {0, 1}r that classifies the data with the least possible

cost
I We focus our attention on linear mapping of the form:

f(x,Θ) = sign((x)T .Θ)

Previous Works

Previous works [3,4] assume that all tasks share the same set of features and the weights of
features are close for all tasks.

However, these methods penalize the ”too large”, or ”too small” elements and smooth out the

structure:
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New Approach

Our method relies on the fact that there exists a decomposition
of the form Θ = B + S :
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Although Θ does not have a simple structure, with this
decomposition, matrix S is sparse and matrix B is block sparse.

Method

To recover the weight matrix Θ more accurately, from less data
samples, we need to exploit its underlying structure:
I Element-wise sparsity in S is encouraged by applying l1 norm

regularization term.
I Block sparsity in B is imposed by l1/l∞ norm regularization.

Hence, our estimation Θ̂ = Ŝ + B̂ is the solution to the following
optimization problem:

(Ŝ , B̂) ∈ argmin{L(S ,B) + λb‖B‖1,∞ + λs‖S‖1,1}
Where L(S ,B) can be any misclassification loss function (e.g.
Logistic Regression or Hinge loss).

Theory

Theorem
Suppose the estimated value of parameters Ŝ , B̂ are obtained
from our method where

1 <
λs
λb
< r

λs > s

√
log pr

n

αs

2− αs
, λb > s

√
log pr

n

αb

2− αb

and

n > max{10s3log(pr)

Cminα2
s

10s2r(r log 10 + logp)

Cminα2
b

}

Then, with probability

1− 2 exp(−c1n)→ 1

we have:
(I ) Supp(Θ̂) ⊆ Supp(Θ∗)

(II ) ‖Θ̂− Θ∗‖∞,∞ ≤ {

√
s log(pr)

Cminn
+ λbDmax}︸ ︷︷ ︸

γ

(III ) Supp(Θ̂) = Supp(Θ∗), if min|Θ∗U| > γ

Numeric Results

Synthetic Dataset: This is a 2-task problem, with features
being Gaussian random variables and data is generated by the
model:

y j = sign(〈θj, x〉) j = 1, 2
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Figure: Comparision of our method with others when: overlap fraction is 0.9,
0.3, and when weights are not necessarily close

SRBCT Dataset: This dataset contains 63 training samples pf
patients with 4 tumor classes: the Ewing tumors (EWS), Burkitt
lymphoma (BL), neuroblastoma (NB) and rhabdomyosarcoma
(RMS). It is tested on 25 test samples.

n Combined Approach Separate Lasso
Average Accuracy

20 0.804 0.730
40 0.926 0.832
63 0.947 0.881

Variance of error
20 0.521% 0.532%
40 0.553% 0.647%
63 0.562% 0.877%

Yeast Dataset: is formed by micro-array expression data and
phylogenetic profiles. There are 1500 genes in the training data
set and 917 in the testing dataset. The number of associated
genes is 103 with r = 14 classification tasks.

n Combined Approach Separate Lasso
Average Accuracy

100 0.553 0.488
500 0.627 0.585
1500 0.698 0.673

support size
100 193 125
500 231 189
1500 287 244
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