

Cross-view Activity Recognition using Hankelets

Binlong Li, Octavia I. Camps and Mario Sznaier Dept. of Electrical and Computer Engineering

Abstract

We introduce a new feature for cross-view activity recognition: the "Hankelet". This type of feature captures dynamic properties of short tracklets that are invariant to viewpoint changes and time shifts. Experiments using Hankelets on the IXMAS database show a 20% improvement over the state of the art.

GOAL

To recognize an activity from a different viewpoint than the one used for training.

Testing Data

HANKELETS

Hankelets: Viewpoint invariance

A Dynamics-based Feature: Hankelet

 $= \Gamma X$

Hankelets: Initial Frame Invariance

The columns of the Hankelets span the

same space, regardless of the initial frame.

 $oldsymbol{\Gamma} = \left[egin{array}{ccc} \mathbf{C}^T & \dots & (\mathbf{C}\mathbf{A}^m)^T \end{array}
ight]^T$

Hankelet Codebook: Clustering

- Captures "alignment" between the column spaces.
- Robust to noisy measurements.
- Computationally efficient.
- Dissimilarity within cluster follows a Gamma pdf:

EXISTING APPROACHES

- Geometric constraints [32]
- Track body joints [21,22]
- 3D Models [8,15,30,31]
- Quasi-invariant geometric features [10,11]
- Transfer features across views [7,16] (75.3% accuracy on IXMAS)

Best performance is far below the state of art performance for single view activity recognition.

BAGS of HANKELETS

Regressor is invariant to affine transformations

 $p_k^{(j)} = \Pi_j P_k = \Pi_j \sum_{i} a_i P_{k-i} = \sum_{i} a_i \Pi_j P_{k-i} = \sum_{i} a_i P_{k-i}^{(j)}$

 $P_k = \sum \mathbf{a_i} P_{k-i}$

While Hankelets carry viewpoint invariance, they are not immune to self-occlusions and limited field of view.

Bi-lingual Hankelets: subset visible from different viewpoints

Experimental Results

Single View: KTH Dataset

Algorithm	Perf
Ours	95.89
Cao et al. [3]	95.02
Wang et al.[29]	94.2
Le et al. [13]	93.9
Li et al [14]	93.6

Act Type	ACC
Boxing	95.71
HClapping	95.48
HWaving	99.09
Walking	99.52
Running	91.52
Jogging	94.05

Train classifier with data from one viewpoint, test with data from a different one

	Cam 0		Cam 1		Cam 2		Cam 3		Cam 4	
	BoHks	cuboids								
Cam 0			83.70	14.40	59.20	10.69	57.37	10.61	33.62	19.09
Cam 1	84.27	16.12			61.58	11.11	62.75	7.41	26.93	9.22
Cam 2	62.52	10.27	65.17	65.17			71.96	12.90	60.14	8.08
Cam 3	57.05	11.15	61.45	61.45	71.04	9.98			31.24	9.30
Cam 4	39.60	8.80	32.84	32.84	68.12	9.22	37.36	10.06		

Algorithm	Perf.
Ours	56.4%
cuboids [16]	10.9%

accuracy improvement

Over 20% improvement

Cross-View: IXMAS Dataset

Algorithm	Perf
Ours	90.57%
Liu et al. [16]	75.3%
Farhadi et al. [7]	58.1%
Junejo et al. [10]	59.5%
Farhadi et al. [6]	74.4%

*See Table 5 in paper for detailed comparisons

This work was supported in part by NSF grants IIS-0713003 and ECCS-0901433, AFOSR grant FA9550-09-1-0253, and the Alert DHS Center of Excellence under Award Number 2008-ST-061-ED0001