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/ Abstract \

Spectroscopic technigues such as Normal Raman (NR) and Surface Enhanced Raman Spectroscopy (SERS)
are considered fast, in situ alternative methods for identification for microorganisms. These techniques
provide important information about the spectroscopic signatures of cellular components of in vitro or in vivo
organisms. The techniques have significant benefits for Industrial Microbiology, Food Microbiology and
biological warfare agents detection. The proposed method of this work is the use of vibrational Raman
techniques as NR and SERS and to detect bioaerosol particles of Bacillus thuringiensis (Bt) employing a fast
and simple synthesis of silver colloids based on reduction of silver nitrate with hydroxylamine hydrochloride
and sodium citrate including pH changes to modified the surface charge of the nanoparticles (NP) to study the

\interaction of the NP and the bacteria. /

wring a biological attack.

/ State of the Art

Based on the current status of world wide antiterrorism efforts there is a need to develop
effective standoff detection techniques for biological agents. Using spectroscopic techniques
the target of this study, Bt, will provide a molecular identification of the strand. These gram-
positive bacteria are recognized for their toxicity on larvae and are used commercially as
Insecticides. B. thuringiensis was chosen due to its similarity with B. anthracis which has a
potential of being used during terrorist attacks. Both of these bacteria form spores which
are able to tolerate extreme environments and make them suitable for transport befor
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Methodology

Synthesis of metallic nanoparticles for SERS

experiments
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Characterization in UV-VIS and SERS
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Citrate nanoparticles
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Bacillus thuringiensis preparation """

50 mL- 15 hours

removed with a micropipette. This procedure should be repeated twice. Then, the bacterial pellet is resuspended in NaCl 0.8% wi/v to obtain a

Biological sample preparation for Raman experiments

The SERS experiments will be performed in
solution and on solid substrates. For
experiments in solution sodium chloride will
be used as a SERS active substrate. For
SERS analysis, 200 pL of the silver colloids,
25uL of Bacillus thuriengiesis and 25uL of
NaCl 0.8% to get a VR=0.02 to be analyzed
Bl will be combined in a vortex vial and

B experiments will be run at different times until
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Time (h) One sample of 40-50 mL was centrifuged for 20 minutes at 6,000 rpm. A bacterial pellet was formed at the bottom of the microtube, while LB
broth media formed the supernatant and was removed using a micropipette. In order to remove the remaining LB broth from the pellets,
Growth curve of Bt bacteria was washed with 5 mL of NaCl 0.80% w/v. Bacteria were centrifuged for 20 minutes at 6,000 rpm and the NaCl supernatant was
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Normal

Raman Spectroscopy (NRS) and Surface Enhanced Raman
Spectroscopy (SERS) can be used as quick methods for liquid bacterial
detection In suspension and as bioaerosol particles with great interest on
standoff detection.
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Results

Synthesis of Ag-NP for SERS experiments

Hydroxylamine nanoparticles
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Influence of pH on the plasmon band of silver-hydroxilamine

nanop

articles
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Raman spectra of Bt @ 5 and 15 h using hydroxylamine reduced Ag NP
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N, for Objective: Behavior of the surface hydroxylamine reduced Ag-NP at different pH
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Changes of silver-hydroxilamine nanopatrticles at ~ 427 nm

Hydroxylamine reduced Ag-NP
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Raman spectra of Bt @ 15 hrs using 5, 7

and 9 pH ‘s of hydroxylamine Nps

Conclusions

Best results:

- Hydroxylamine reduced Ag NP
- 24 h after mix Bt and NP: best signal
- 532nm, 10s, 3 acq, 60-80 mW

- VR=0.02
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Citrate nanoparticles

Objective: Behavior of the surface citrate reduced Ag-NP at different pH
Result: Max absorbance: 7-9 pH

— 1.20
1.2 PH1
. P 1.00
—nH 3
0.8 pH 4 0.80
2 e===pH 5 3
2 €
0.6 pH norma 30.60
<
0.4 pH 7 0.40
pH 8
0.2 pH 9 0.20
H 10
0 p
0.00
300 500 700 PH 11 1 2 3 4 5 6 7 8 9 10 11
wavenumber (nm) pH

UV-Vis spectra of the citrate nanoparticles at different pH ) ) )
Maximum absorbance of the citrate nanoparticles at 1-11 pH range

Raman experiments
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~15 hrs growth using hydroxylamine nanoparticles at

different hours

Citrate reduced Ag-NP
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Future experiments

Experimental Raman set up for bioaerosol detection
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