
• View problem as binary classification: explosive vs. benign
• Use labeled data 
• Find basis functions fi tuned for classification
• Use resulting coefficients ai as features

Data:
• Sampled LAC-curves of materials (124 explosives and 111 non-
explosives [2-6])

Methods examined:
• Photo-Compton model (Photo-Compton)
• Singular Value Decomposition (SVD) [7]
• Sequential Linear Discriminant Analysis (SLDA) [8]
• Non-parametric Discriminant Analysis (NDA) [9]
• Heteroscedastic Extension of Linear Discriminant Analysis (HELDA) [10]
• Local Discriminant Embedding (LDE) [11]
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• In luggage inspection, higher detection accuracy and lower false 
alarm rates are needed.
• Multi-Energy X-ray Computed Tomography (MECT) is a non-
destructive scanning technology with the potential for enhanced 
material discrimination.
• Through the principled application of machine learning and 
optimization methods, significant improvement of existing MECT 
systems may be obtained.

Our focus:
Optimizing information extraction from MECT 
measurements for increased discrimination 

between explosive and benign materials
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Basis Selection Methods
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Results of this study may lead to an improved CT based explosive 
detection system:

Next step: Incorporating the basis selection procedure into the 
complete MECT problem.

• Assumption:

• A common physics-based representation is [1]:

• The problem: photo-Compton model does not fit all materials 
and is not tuned for classification.
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2D Example

Separability is higher using classification-aware methods.

• The choice of features is not trivial.

• It is possible to do better than with photo-Compton. 

• It is possible to do better than with just 2 coefficients.
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Materials and X-rays: The LAC
• X-ray interaction with materials captured by the 
Linear Attenuation Coefficient (LAC): µ
• Function of X-ray energy
• Material “signature”
• MECT measurements contain LAC info.
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• Chose randomly 10 explosives and 10 benign materials to compose 
example dataset
• For each basis selection method:

• Obtained basis functions f1 and f2
• Calculated the corresponding coefficients a1 and a2 for each of the 
materials in the dataset

Method Adaptive? Classification-aware?
Photo-Compton x x

SVD  x
SLDA  

NDA  

HELDA  

LDE  

• Evaluated basis selection methods by classifier performance
• The experiment:

Step 1: Divide data randomly into training (80%) and testing (20%)
Step 2: Apply basis selection methods to training data to obtain basis fns fi
Step 3: Train the classifier using coefficients ai of the training data
Step 4: Test the classifier using coefficients ai of the test data
Step 5: Repeat steps 1-4 and calculate average correct rate

We used three classifiers: SVM with linear kernel (SVM-L), SVM with Gaussian 
kernel (SVM-G), and K-nearest-neighbor (KNN)
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