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Research to Reality
The 2½ D FDFD algorithm has been developed in order to model the

electromagnetic fields arising from realistic geometries and sources in a

fast and efficient manner. 2D algorithms are too limiting and full 3D

algorithms too slow and/or computationally storage-intensive, so the 2 ½ D

algorithm is a practical compromise between speed and model complexity

and is applicable to many real world problems (whole-body imaging,

tunnel detection etc.) where there is a preferred axis along which the

geometry varies slowly. The suite of computational tools being developed

at Northeastern University, which includes all three FDFD algorithms, is

an important toolkit for any type of electromagnetic scattering simulations,

and the FDFD algorithms have particular application as forward models

for inverse scattering problems. An interview mode “front end” to the 2D-

2½ D FDFD code allows any researcher to simulate problem geometries

and sources quickly and then find the resulting fields in a matter of

seconds or minutes.
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Deriving 2 ½ D Equations Coupled “TM” and “TE” Wave Equation

for Ez0 and Hz0 (kz ≠ 0)
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Abstract
The 2½ D FDFD (Finite Difference Frequency Domain) algorithm falls

between strict 2D and full 3D computational methods and is applicable to

geometries which are slowly varying along a preferred axis (chosen to be

the z axis) and sources which may have a component of wave propagation

in that direction. By contrast, 2D FDFD methods require uniform cross-

sectional geometries for all values of z and “broadside” wave propagation

such that kz = 0. We describe the derivation and implementation of the

2 ½ D FDFD algorithm and apply it to the realistic case of a uniform torso

cross section illuminated by 2D point sources (lines of current) exterior to

the computational grid with arbitrary polarization and propagation

directions. The 2 ½ D FDFD simulation requires two wave equations to be

solved simultaneously for both longitudinal field components Ez and Hz,

rather than solving a single wave equation for Ez (TM) or Hz (TE) as is

done in the 2D FDFD algorithm. All four transverse fields may be obtained

directly from Ez and Hz, just as Hx and Hy were obtained from Ez in the 2D

TM case and Ex and Ey from Hz in the 2D TE case. The resulting FDFD

sparse matrix equation to be inverted for X = [Ez; Hz] is four

times larger than its 2D analog with 15 nonzero diagonal elements rather

than five.
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 material is slowing 

varying in z

 arbitrary source 

polarization and 
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 All field components given by:

where  a is small

 Materials (ε & μ) slowly vary in z. If they are independent of z, then a = 0.

 kz is not necessarily small

 Generalized “TM” wave equation (generalized “TE” equation is dual):
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Always part of the equation Only present if kz ≠ 0

Only present if transverse current sources exist

Only present if a ≠ 0

Only present if a ≠ 0 and kz ≠ 0

Adding CSCs within Targets
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 Transverse kT is given by                       where                   is the wave 

number and kz is the longitudinal component of k.

 Jx0, Jy0, and Jz0 are electric current sources

 Jm,x0, Jm,y0, and Jm,z0 are magnetic current sources

 Transverse electric and magnetic fields are given by:
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Procedure Itera-

tive?

Coupled

Ez0 and 

Hz0?

Matrix size

Strict

2D - TM

a = 0

kz = 0

Solve for Ez0 using 2D-

FDFD solver; find Hx0 and 

Hy0 from transverse 

equations; only Jz0

allowed

no no A matrix is NxNy

NxNy

Strict

2D - TE

a = 0

kz = 0

(Dual)

Solve for Hz0 using 2D-

FDFD solver; find Ex0 and 

Ey0 from transverse 

equations; only Jm,z0

allowed

no no A matrix is NxNy

NxNy

TM 2 ½ D for 

broadside 

sources and 

slowly varying 

cross-sectional 

geometries

a ≠ 0

kz = 0

Solve for Ez0 using 2D-

FDFD solver; find Hx0 and 

Hy0 from transverse 

equations; only Jz0

allowed

yes no A matrix is NxNy

NxNy; z derivatives 

will have to be 

constructed from 

adjacent cross 

sections

TE 2 ½ D for 

broadside 

sources and 

slowly varying 

cross-sectional 

geometries

a ≠ 0

kz = 0

(Dual)

Solve for Hz0 using 2D-

FDFD solver; find Ex0 and 

Ey0 from transverse 

equations; only Jm,z0

allowed

yes no A matrix is NxNy

NxNy; z derivatives 

will have to be 

constructed from 

adjacent cross 

sections

2 ½ D for 

oblique sources 

and invariant 

cross-sectional 

geometries

a = 0

kz ≠ 0

Find Ez0 and Hz0

simultaneously using 

2 ½ D-FDFD solver; find 

transverse fields; both Jz0 

and Jm,z0 allowed

no yes A matrix is 2NxNy

2NxNy

2 ½ D for 

oblique sources 

and slowly-

varying cross-

sectional 

geometries

a ≠ 0

kz ≠ 0

Find Ez0 and Hz0

simultaneously using 

2 ½ D-FDFD solver; find 

transverse fields; both Jz0 

and Jm,z0 allowed

yes yes A matrix is 2NxNy

2NxNy; z

derivatives will 

have to be 

constructed from 

adjacent cross 

sections

Comparing 2 ½ D Models

where

First discretization of “TM” wave equation:

where Eij represents the field Ez0 at point (i, j) where i and j index the x and 

y coordinates, respectively, and

Second discretization of  “TM” wave equation:

Schematic of Coupled A Matrix
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is 2D-TE FDFD matrix equation

is 2 ½ D FDFD matrix equation

 f = 10 GHz

 h = 0.513 mm (10 points per λ in skin)

 geometry: blue = air, green = skin, red = metal

 εskin = (30 + 13.5 i) ε0

 current sources: IE = 1 and IH = 0

 ξ = 30 deg (tilt angle from normal in x-y plane)

 point current source located at (x, y) = 

(−0.25, 0.5) meters



θi = 90

θi = 70

θi = 50

θi = 30

θi = 10
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Value Added to CenSSIS
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For a point source at i = i0 and  j = j0: 

2 ½ FDFD Geometry


