

Toward Model-Based Reconstruction in Scanned Baggage Security Applications

Penachona Jin*. Eri Haneda*. Charles. A. Bouman*. and Ken D. Sauer**

- * Electrical and Computer Engineering, Purdue University, West Lafavette, IN USA 47906
- ** Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

Abstract

Our research objective is a general implementation of model-based reconstruction for multi-slice helical scan CT geometry with application to transportation security screening.

Model-based reconstruction has several potential advantages compared to traditional filtered backprojection (FBP) reconstruction including:

- Reduced artifacts such as metal streaks
- Reduced noise
- Improved Image resolution

Multi-slice helical CT

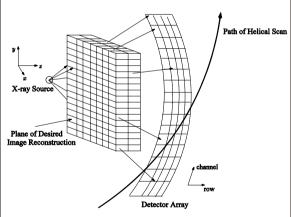
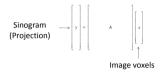



Fig 1. Multi-slice helical CT geometry

- Multi-slice helical CT has a cone-beam structure
- Gantry (X-ray source, detector array) rotates around an object in a helical scan path.
- Detector array consists of hundreds of channels and several rows.
- In our projection model, each voxel was flattened along the dimensions parallel to detector face.

Forward projection

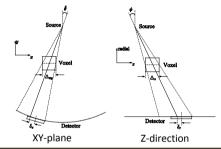
Multi-slice helical CT scanner forward projection can be modeled by a linear matrix operation:

- The forward matrix A is defined by CT geometry and image representation
- The *j*-th column of A corresponds to projection of voxel i.
- Each column entry is calculated as a product of XY-plane projection Bi,j, and Zdirection adjustment factor Ci,j for i-th detector element.

$$A_{i,j} = B_{i,j} \times C_{i,j}$$

$B_{i,j} = \frac{\Delta_{xy}}{\cos \tilde{\theta}} V_c(\delta_c) * S_c(\delta_c)$ $C_{i,j} = \frac{1}{\cos \phi} V_r(\delta_r) * S_r(\delta_r)$

 Δxy : Voxel size


 θ , ϕ : Ray angle in xy-plane and z-direction

Model-based reconstruction

 δc . δr : Offset from detector element center

V: voxel window function

S: Detector sensitivity function

MAP estimation

$$\hat{x} = \arg\min_{x} \left\{ \frac{1}{2} (y - Ax)^{T} D(y - Ax) + U(x) \right\}$$

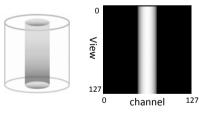
x: Reconstructed image values

v: Measured CT projection (sinogram)

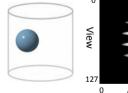
- Log-likelihood term for x-ray transmission is based on a second-order Taylor series expansion.
- D is a diagonal matrix where we assume an identity matrix.
- Log-prior U(x) is a regulation term for smoothness

Log-prior term

We used a quadratic GMRF prior with p=2 for U(x)


$$U(x) = \frac{1}{p\sigma^{P}} \sum_{\{i,j\} \in C} g_{i,j} \left| x_i - x_j \right|^{P}$$

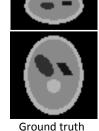
Optimization

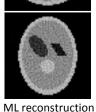

Iterative Coordinate Descent (ICD) method was used ICD was performed with 30 iterations

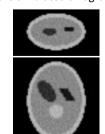
Preliminary low resolution test results

Forward projection

(a) Cylinder object


channel


(b) Off-centered sphere


Model-based reconstruction (white noise was added to the simulated sinogram)

Coronal view 32x64 Axial view

64x64

MAP reconstruction

Accomplishments

- Designed and implemented distance-driven based forward projection for multi-slice helical CT scanner
- Implemented model-based reconstruction with a quadratic prior and ICD optimization
- Simulated reconstruction using phantom data

Future work

- Implement non-quadratic prior model
- Optimize and parallelize code
- Apply model-based reconstruction to real data
- Evaluate model-based reconstruction on a variety of real and simulated data
- Develop a statistical model for more accurate CT baggage reconstruction

References

[1] J.B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, "A three-dimensional statistical approach to improved image quality for multi-slice helical CT," Med. Phys., vol. 34, no. 11, pp. 4526-4544, 2007.

[2] K. Sauer and C. Bouman, "A local update strategy for iterative reconstruction from projections," IEEE Trans. On Signal Processing, vol. 41, no 2. 1993