
Motion is a powerful cue to distinguish objects: in many 
tracking scenarios it is possible to discriminate the 
targets from each other by only looking at their motion 
patterns. Yet, most state of the art approaches to multi 
target tracking rely heavily on appearance to associate 
detections from frame to frame and often overlook 
motion cues. In this work, we propose a multi-object 
tracking framework based on motion dynamics which is 
capable of tracking alike objects or objects with similar 
appearance and recover missing data due to long 
occlusions. 

Fact
Tracklets with same motion dynamics  can be explained by a single regressor
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Figure 3. What do we solve. 1. Similar objects 2. Crossings 3.
Long/Difficult occlusions 4. Camera motion.

3. Dynamics-based Multi-target Tracking
Given a set of short tracklets, possibly of different

lengths and with no appearance information, we want to
associate together those that belong to the same trajectory.
Thus, the objective is to merge/sort the tracklets in such a
way that the aggregated trajectories represent meaningful
motions of the targets.

There are four challenges that makes this association task
difficult (See Figure 3): 1. Object appearance similarity
or lack of appearance information, 2. Object crossings, 3.
Missing data due to long occlusions, and 4. Camera motion.

To address these challenges, we formulate the multi-
target tracking problem as a Generalized Linear Assignment
(GLA) using a dynamics-based similarity measure. We be-
lieve that dynamics carry meaningful information to asso-
ciate tracklets and that GLA is the most natural mathemati-
cal model for our described objective since it allows a track-
let to start anytime, anywhere and end anytime, anywhere.

3.1. Tracklet Dynamics and Similarity Measure
A tracklet ↵ consists of an ordered sequence of measure-

ments yk, k = s, s + 1, . . . , e � 1, e, where s and e are
the starting and ending times, respectively. The underlying
dynamics of the tracklet can be represented using a linear
regressor, since linear regressors are universal approxima-
tors [7]. That is, given the tracklet ↵ temporal sequence, it
is always possible to express the value of the measurement
at time k as a combination of previous measurements:

yk =

nX

i=1

aiyk�i , k � s + n (1)

for a high enough value of n, where n is the order of the
regressor. The order n measures the “complexity” of the
underlying dynamics and in the absence of noise, n =

rank(H(m)
↵ ) where H(m)

↵ is the Hankel matrix of the mea-
surements with m � n columns:

H(m)
↵ =̇
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Figure 4. Tracklet dynamics-based similarity measure. Left: a sin-
gle regressor approximates well a trajectory and pieces of it. Right:
If two tracklets are from different trajectories, explaining the joint
trajectory requires a higher order regressor.

The above representation suggests a way to measure sim-
ilarity between tracklets [11]. If two tracklets are portions
of the same trajectory they can be approximated by a sin-
gle, relatively low order regressor. On the other hand, if
two tracklets belong to different trajectories, explaining a
merged/joined trajectory requires a higher order regressor
than the regressors of each tracklet2. (See Figure 4).

Then, the dynamics-based similarity Pij between two
tracklets ↵i, ↵j is defined [11] as:

Pij=̇

8
<

:
�1 if ↵i and ↵j conflict
rank(H↵i )+rank(H↵j )

min
�

j
i

rank(H↵ij ) � 1 otherwise

where ↵ij = [↵i �j
i ↵j ] is the joint tracklet padded with

tracklet �j
i at the gap between ↵i and ↵j values.

Intuitively, if rank(H↵i) = ri and rank(H↵j ) = rj ,
then rank(H↵ij ) = rij  (ri + rj). Accordingly, if ↵i and
↵j belong to the same trajectory, then ri = rj = rij and
Pij = 1, but if ↵i and ↵j are not related Pij ⇡ 0.

A major challenge using this measure is that one has to
estimate the rank of noisy and incomplete structured ma-
trices. Ding et al [11] addressed this by setting up an op-
timization problem to minimize the rank of a given Han-
kel matrix with respect to the noise and missing variables.
Since rank minimization is an NP-hard problem, they used
a nuclear norm relaxation of rank and solved an SDP prob-
lem. However, the computational complexity of the opti-
mization problem is O(r3c3

) for an r ⇥ c Hankel matrix3

and becomes prohibitive to use it in a multi-target tracking
scenario with a large number of tracklets of moderate length
like the ones considered here.

In this paper, we propose a new algorithm to estimate
the rank of a noisy and incomplete Hankel matrix based on

2Here the assumption is that the object does not drastically change it’s
dynamical behavior between tracklets. This is a fair assumption for track-
lets that are close to each other in time. This is similar to saying that
appearance will stay similar over-time and change slowly, a common as-
sumption in appearance-based target tracking [3, 8, 15].

3For a tracklet r = 2(l � c) where l is the length of the tracklet.
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Figure 3. What do we solve. 1. Similar objects 2. Crossings 3.
Long/Difficult occlusions 4. Camera motion.

3. Dynamics-based Multi-target Tracking
Given a set of short tracklets, possibly of different

lengths and with no appearance information, we want to
associate together those that belong to the same trajectory.
Thus, the objective is to merge/sort the tracklets in such a
way that the aggregated trajectories represent meaningful
motions of the targets.

There are four challenges that makes this association task
difficult (See Figure 3): 1. Object appearance similarity
or lack of appearance information, 2. Object crossings, 3.
Missing data due to long occlusions, and 4. Camera motion.

To address these challenges, we formulate the multi-
target tracking problem as a Generalized Linear Assignment
(GLA) using a dynamics-based similarity measure. We be-
lieve that dynamics carry meaningful information to asso-
ciate tracklets and that GLA is the most natural mathemati-
cal model for our described objective since it allows a track-
let to start anytime, anywhere and end anytime, anywhere.

3.1. Tracklet Dynamics and Similarity Measure
A tracklet ↵ consists of an ordered sequence of measure-

ments yk, k = s, s + 1, . . . , e � 1, e, where s and e are
the starting and ending times, respectively. The underlying
dynamics of the tracklet can be represented using a linear
regressor, since linear regressors are universal approxima-
tors [7]. That is, given the tracklet ↵ temporal sequence, it
is always possible to express the value of the measurement
at time k as a combination of previous measurements:

yk =

nX

i=1

aiyk�i , k � s + n (1)

for a high enough value of n, where n is the order of the
regressor. The order n measures the “complexity” of the
underlying dynamics and in the absence of noise, n =

rank(H(m)
↵ ) where H(m)

↵ is the Hankel matrix of the mea-
surements with m � n columns:

H(m)
↵ =̇
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Figure 4. Tracklet dynamics-based similarity measure. Left: a sin-
gle regressor approximates well a trajectory and pieces of it. Right:
If two tracklets are from different trajectories, explaining the joint
trajectory requires a higher order regressor.

The above representation suggests a way to measure sim-
ilarity between tracklets [11]. If two tracklets are portions
of the same trajectory they can be approximated by a sin-
gle, relatively low order regressor. On the other hand, if
two tracklets belong to different trajectories, explaining a
merged/joined trajectory requires a higher order regressor
than the regressors of each tracklet2. (See Figure 4).

Then, the dynamics-based similarity Pij between two
tracklets ↵i, ↵j is defined [11] as:

Pij=̇

8
<

:
�1 if ↵i and ↵j conflict
rank(H↵i )+rank(H↵j )

min
�

j
i

rank(H↵ij ) � 1 otherwise

where ↵ij = [↵i �j
i ↵j ] is the joint tracklet padded with

tracklet �j
i at the gap between ↵i and ↵j values.

Intuitively, if rank(H↵i) = ri and rank(H↵j ) = rj ,
then rank(H↵ij ) = rij  (ri + rj). Accordingly, if ↵i and
↵j belong to the same trajectory, then ri = rj = rij and
Pij = 1, but if ↵i and ↵j are not related Pij ⇡ 0.

A major challenge using this measure is that one has to
estimate the rank of noisy and incomplete structured ma-
trices. Ding et al [11] addressed this by setting up an op-
timization problem to minimize the rank of a given Han-
kel matrix with respect to the noise and missing variables.
Since rank minimization is an NP-hard problem, they used
a nuclear norm relaxation of rank and solved an SDP prob-
lem. However, the computational complexity of the opti-
mization problem is O(r3c3

) for an r ⇥ c Hankel matrix3

and becomes prohibitive to use it in a multi-target tracking
scenario with a large number of tracklets of moderate length
like the ones considered here.

In this paper, we propose a new algorithm to estimate
the rank of a noisy and incomplete Hankel matrix based on

2Here the assumption is that the object does not drastically change it’s
dynamical behavior between tracklets. This is a fair assumption for track-
lets that are close to each other in time. This is similar to saying that
appearance will stay similar over-time and change slowly, a common as-
sumption in appearance-based target tracking [3, 8, 15].

3For a tracklet r = 2(l � c) where l is the length of the tracklet.
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Figure 3. What do we solve. 1. Similar objects 2. Crossings 3.
Long/Difficult occlusions 4. Camera motion.

3. Dynamics-based Multi-target Tracking
Given a set of short tracklets, possibly of different

lengths and with no appearance information, we want to
associate together those that belong to the same trajectory.
Thus, the objective is to merge/sort the tracklets in such a
way that the aggregated trajectories represent meaningful
motions of the targets.

There are four challenges that makes this association task
difficult (See Figure 3): 1. Object appearance similarity
or lack of appearance information, 2. Object crossings, 3.
Missing data due to long occlusions, and 4. Camera motion.

To address these challenges, we formulate the multi-
target tracking problem as a Generalized Linear Assignment
(GLA) using a dynamics-based similarity measure. We be-
lieve that dynamics carry meaningful information to asso-
ciate tracklets and that GLA is the most natural mathemati-
cal model for our described objective since it allows a track-
let to start anytime, anywhere and end anytime, anywhere.

3.1. Tracklet Dynamics and Similarity Measure
A tracklet ↵ consists of an ordered sequence of measure-

ments yk, k = s, s + 1, . . . , e � 1, e, where s and e are
the starting and ending times, respectively. The underlying
dynamics of the tracklet can be represented using a linear
regressor, since linear regressors are universal approxima-
tors [7]. That is, given the tracklet ↵ temporal sequence, it
is always possible to express the value of the measurement
at time k as a combination of previous measurements:

yk =

nX

i=1

aiyk�i , k � s + n (1)

for a high enough value of n, where n is the order of the
regressor. The order n measures the “complexity” of the
underlying dynamics and in the absence of noise, n =
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↵ ) where H(m)

↵ is the Hankel matrix of the mea-
surements with m � n columns:
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Figure 4. Tracklet dynamics-based similarity measure. Left: a sin-
gle regressor approximates well a trajectory and pieces of it. Right:
If two tracklets are from different trajectories, explaining the joint
trajectory requires a higher order regressor.

The above representation suggests a way to measure sim-
ilarity between tracklets [11]. If two tracklets are portions
of the same trajectory they can be approximated by a sin-
gle, relatively low order regressor. On the other hand, if
two tracklets belong to different trajectories, explaining a
merged/joined trajectory requires a higher order regressor
than the regressors of each tracklet2. (See Figure 4).

Then, the dynamics-based similarity Pij between two
tracklets ↵i, ↵j is defined [11] as:

Pij=̇
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�1 if ↵i and ↵j conflict
rank(H↵i )+rank(H↵j )

min
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rank(H↵ij ) � 1 otherwise

where ↵ij = [↵i �j
i ↵j ] is the joint tracklet padded with

tracklet �j
i at the gap between ↵i and ↵j values.

Intuitively, if rank(H↵i) = ri and rank(H↵j ) = rj ,
then rank(H↵ij ) = rij  (ri + rj). Accordingly, if ↵i and
↵j belong to the same trajectory, then ri = rj = rij and
Pij = 1, but if ↵i and ↵j are not related Pij ⇡ 0.

A major challenge using this measure is that one has to
estimate the rank of noisy and incomplete structured ma-
trices. Ding et al [11] addressed this by setting up an op-
timization problem to minimize the rank of a given Han-
kel matrix with respect to the noise and missing variables.
Since rank minimization is an NP-hard problem, they used
a nuclear norm relaxation of rank and solved an SDP prob-
lem. However, the computational complexity of the opti-
mization problem is O(r3c3

) for an r ⇥ c Hankel matrix3

and becomes prohibitive to use it in a multi-target tracking
scenario with a large number of tracklets of moderate length
like the ones considered here.

In this paper, we propose a new algorithm to estimate
the rank of a noisy and incomplete Hankel matrix based on

2Here the assumption is that the object does not drastically change it’s
dynamical behavior between tracklets. This is a fair assumption for track-
lets that are close to each other in time. This is similar to saying that
appearance will stay similar over-time and change slowly, a common as-
sumption in appearance-based target tracking [3, 8, 15].

3For a tracklet r = 2(l � c) where l is the length of the tracklet.
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4.1. SMOT Sequences
Dribbling video includes a basketball player doing a dif-

ficult dribbling drill with alike balls which features complex
motion trajectories and frequently undergo occlusion.

Slalom video has three skiers racing down a slalom.
They perform complex motions and get close to each other
very frequently. One skier escapes out of the field of view
for a long time. This video also exhibits camera motion and
zooming.

Juggling video is a 3-ball juggling scene and is the hard-
est sequence in the dataset. The juggler adds artistic mo-
tions to the performance with alternating tricks. The motion
of the balls, juggler and the camera combined makes this
sequence incredibly hard even for a human to keep track of
the balls.

Acrobats video is a short sequence from Cirque De
Soleil acrobats from the Academy Awards 2012. In this
sequence all the acrobats are dressed the same; they lineup
in the air and get occluded several times.

Seagulls video shows a flock of seagulls taking off at sea.
This is another extremely difficult sequence where seagulls
fly close to each other and get occluded very frequently.

Crowd video is from the crowd UCF dataset [1]. It is an
overcrowded surveillance scene (clearly a setup) where the
detections are the heads of the people. Due to the density of
the crowd, there are frequent occlusions among the closely
moving targets.

Balls video is from [4]. These are randomly bouncing
identical ping pong balls. There are around 50 of them
along the sequence.

4.2. Performance Evaluation
We ran our algorithm and compared its performance

against the methods in [4] and [9] using the standard Multi-
ple Object Tracking Accuracy (MOTA) metric [16].

We compared our algorithm against [4] on the SMOT
dataset, for three reasons. First, it is a state-of-art algo-
rithm for multi-target tracking. Second it can work on tar-
gets without using appearance. Lastly, their code is publicly
available. To use their algorithm, we used a 64 ⇥ 64 grid,
and we set the borders of the image as start and termina-
tion locations. That means edge cells are sink and source
nodes. This is a limiting issue for the algorithm, since the
test sequences may not comply with that assumption. How-
ever, this is a requirement for the algorithm of [4]. Finally, a
maximum depth of {1, 2, 3} was used whichever performed
best for the sequence.

Additionally, we also compared our work against [9].
However, since their code is not available, we could only
compare by using the psu-hub sequences from their paper,
following their workflow for testing and evaluating. These
are two sequences of 15 min video shots from a pedestrian-
hallway. The dataset only includes detections (no appear-

Table 1. MOTA performance for the proposed method (SAT), KSP
[4] and MDA [9]. The values in parenthesis are number of iden-
tity switches (small is better). The scenario difficulty (Object
Crossings, Long/Difficult Occlusions and Camera Motion) is in-
dicated in parenthesis next to the sequence name.

Video Name SAT (ours) KSP MDA
Dribbling ( C) 0.992 (0) 0.877 (2) –
Balls ( C) 0.997 (3) 0.572 (6) –
Crowd (CM) 0.998 (40) 0.870 (1215) –
Slalom (COM) 0.999 (2) 0.975 (13) –
Seagulls (COM) 0.993 (23) 0.925 (305) –
Acrobats (COM) 0.997 (1) 0.957 (12) –
Juggling (COM) 0.977 (2) 0.422 (15) –
PSU-sparse ( –) 0.9642 1.00
PSU-dense (–) 0.9218 0.87

ance). One sequence is with a sparser crowd and the other
with a denser crowd. See [9] for details.

The MOTA evaluation measure takes into account
switches, false negatives and false positives:

MOTA = 1�
P

t(fnt + fpt + mmt)P
t gtt

(13)

where fnt, fpt, mmt and gtt are false negatives(misses),
false positives, mismatches and ground truth at frame t, re-
spectively6. It should be noted that unfortunately MOTA
cannot evaluate the inpainting performance of our algorithm
since each estimate for an occluded object would be treated
as a false positive in the MOTA calculation.

4.3. Implementation Details
An initial set of short tracklets of length 3 or longer

was simply created by stitching non-conflicting detections
within a radius of half the size of the target detection. The
only parameter for algorithm 2 is ⌘max which is the stan-
dard deviation of the error in detection. The algorithm is not
very sensitive to this parameter. One can find a good value
with few empirical evaluations. For our sequences we se-
lected values in the range (2� 5) pixels. One can speed up
the algorithm by using a portion of a tracklet when tracklets
get excessively long. As a rule of thumb, a trajectory length
slightly longer than the maximum gap length worked well
for us. Also, it is better to merge trajectories from easiest
to hardest – i.e. it is faster and more accurate to fill smaller
gaps first. In our implementation we set a threshold for the
maximum gap length to be inpainted, which was increased
at each iteration.

4.4. Results
Figure 5 shows sample frames of the tracked sequences

where targets are identified by the color of their bounding
6In these experiments there are no false positives and mismatches cor-

respond to target identity switches.
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Figure 5. Tracking results for dribbling, balls, crowd, slalom, seagulls, acrobats, juggling sequences.
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Abstract

Motion is a powerful cue to distinguish objects: in many
tracking scenarios it is possible to discriminate the targets
from each other by only looking at their motion patterns.
Yet, most state of the art approaches to multi target track-
ing rely heavily on appearance to associate detections from
frame to frame and often overlook motion cues. In this pa-
per, we propose a multi-object tracking framework based
on motion dynamics which is capable of tracking alike ob-
jects or objects with similar appearance and recover miss-
ing data due to long occlusions. Following a tracking by
detection approach, the proposed framework builds on an
Iterative Hankel Total Least Squares (IHTLS) algorithm to
compute dynamics-based similarity measures and recover
missing data coupled with a Generalized Linear Assignment
(GLA) formulation to associate similar tracklets. The pro-
posed approach works with tracklets of arbitrary length and
motion complexity yet it captures the overall motion dynam-
ics of the targets. Experiments using challenging videos
show that this framework can handle complex target mo-
tions, non-stationary cameras and long occlusions, on sce-
narios where appearance cues are not available or poor.

1. Introduction
Recent advances in the accuracy and efficient imple-

mentation of object detectors [10, 13], and in particular
of pedestrian detectors, have inspired and fueled multi-
target tracking approaches by detection. These techniques
proceed by independently detecting the targets frame by
frame using a high quality object detector and then asso-
ciating these detections by using online or offline trackers
[3, 27, 28, 30] that rely on appearance and location (and
sometimes velocity) to decide whether two detections are
observations of the same object at different times. In addi-
tion, these techniques handle the start and end of the targets’
trajectories through the use of “source” and “sink” nodes.
These approaches achieve good results for scenarios, such
as pedestrian tracking, where the appearance of the targets
is discriminative, the targets display simple motion patterns,

Figure 1. It is hard to say which ball is which. Their appear-
ance does not help. We need to see them moving to disambiguate
them.Then motion becomes their identity.

and source and sink nodes are naturally placed at the bound-
aries of the field of view. [3, 8, 17, 30]. However, these al-
gorithms often fail when confronted with more challenging
scenarios where targets have similar appearance or follow
complex motions such as the example shown in Figure 1 or
come out in the middle of the field of view1. While there
are trackers that rely less on appearance [5, 6, 9, 26], they
often require tuning of a large number of parameters and
expertise to adapt the algorithms to these more challenging
scenarios.

We argue that the motion dynamics of a target carries
important identification information, and we show in this
paper that it can be efficiently used to maintain target iden-
tities. In fact, in many scenarios dynamical information
may be the only information available (See Figure 1). It
should be noted, that our method is not a contradictory but
a complementary method to appearance-based methods: It
can improve the performance of appearance-based meth-
ods when visual discrimination is possible, yet retains target
identities when such information is not available.

1.1. Contributions
In this paper we propose an algorithm that uses motion

dynamics to track targets with similar appearance, in the
presence of missing data (due to long occlusions), cross-
ing trajectories and complex dynamics (including camera
motion). The only required inputs for the algorithm are

1For example, a person coming out of a door in the middle of the field
of view.

1

References
[1]. J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking using k-shortest paths 
optimization. IEEE Transactions on PAMI, 33(9):1806–1819, 2011.

[2]. T. Ding, M. Sznaier, and O. Camps. Fast track matching and event detection. In CVPR, pages 1–
8. IEEE, 2008

[3]. C. Dicle, O. Camps, and M. Sznaier. The way they move: Tracking Multiple Targets with 
Similar Appearance, to be submitted to ICCV 2013.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#****

CVPR
#****

CVPR 2013 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 1: Hankel Total Least Squares
Input: ↵ sequence of length l, ! sampling sequence

of length l, desired rank n
Output: ↵̂ inpainted and cleaned sequence, ⌘

noise/perturbation, x AR coefficients
Form [A|b](l�n+1)⇥(n+1)

Solve min ||Ax� b||22 for x
Form P1 and WD from !
⌘ = 0

while
����

����

✓
�⌘
�x

◆����

���� > ✓ do
Form XP0 from x
Form [E|f ](l�n+1)⇥(n+1)

Compute r = b + f � (A + E)x

Form M =

✓
⇡(P1 �XP0) �⇡(A + E)

WD 0

◆

Solve min

����

����M
✓

�⌘
�x

◆
+

✓
⇡r

WD⌘

◆����

����
2

2

for �⌘, �x

Update x = x + �x,⌘ = ⌘ + �⌘

Algorithm 2: Iterative Hankel Total Least Squares
Input: ↵ sequence of length l, ⌘max maximum

average error, ! sampling sequence
Output: ↵̂ inpainted and cleaned sequence, n

estimated rank for the sequence
n = 0 , µ⌘ = huge
Form ⌦(l�n)⇥(n+1) = H(n+1)

!

while µ⌘ > ⌘max do
n = n + 1;
Solve HTLS problem, min||⌦ � [E|f ]||F st.
(A + E)x = b + f
Form [E|f ](l�n)⇥(n+1) = H(⌘)

Compute average error, µ⌘ =

||⌦�[E|f ]||F
||⌦||1

3.3. Generalized Linear Assignment Problem
Given a set of N tracklets {↵1, . . . ,↵N}, the Linear As-

signment (LA) Problem is stated as the following optimiza-
tion problem:

max

X

NX

i=1

NX

j=1

PijXij (11)

st.
NX

i=1

Xij = 1 ;

NX

j=1

Xij = 1 ; Xij 2 {0, 1}

where Pij measures the similarity between tracklets ↵i and
↵j . P is a predecessor-successor matrix, meaning Pij is
�1 if ↵j cannot follow ↵i in time. Xij is an optimization
decision variable, where Xij = 1 indicates that ↵i is the

predecessor of ↵j and that they will be merged considering
the gap between them.

Equation (11) is the max-flow formulation used by
[4, 26, 30] where the constraints enforce that each track-
let has to be assigned to one predecessor and one succes-
sor. In general, the problem is augmented with source and
sink nodes to simulate the entrance and termination of the
tracklets, so that every tracklet can have a predecessor and a
successor. However, in order to use sink and source nodes,
one must compute or know both the tracklet’s entrance and
termination probabilities, which are often hard to estimate
for general scenarios. Thus, instead of using the LA for-
mulation (11), we prefer to use the Generalized Linear As-
signment (GLA) [23, 24] formulation (12), which is a more
natural representation of the tracklet association problem:

max

X

NX

i=1

NX

j=1

PijXij (12)

st.
NX

i=1

Xij  1 ;

NX

j=1

Xij  1 ; Xij 2 {0, 1}

The main difference between LA and GLA, is that in the
latter, tracklets are not forced to begin, terminate or asso-
ciate with any other tracklet. While at a first glance, this
seems to be a small change, it has two important conse-
quences: 1. in this formulation one does not need to setup
sink source nodes nor does not need to learn (tune) parame-
ters for tracklet entrance and termination probabilities; and
2. GLA is an NP-Complete problem which is harder to
solve than the LA problem. However, under very mild con-
straints the “softassign” algorithm [14] can solve the GLA
problem. Softassign finds an approximate solution using a
deterministic annealing method and it is guaranteed to con-
verge. In our experiments, it was observed that the pro-
posed similarity measure reduces possible ambiguities and
leads softassign to fast and accurate convergence (on aver-
age converges in 10 iterations and never takes more than
100 iterations).

4. Experiments
In order to evaluate the proposed approach, we collected

a set of challenging videos with multiple targets with identi-
cal or very similar appearance to assemble the Similar Mul-
tiObject Tracking (SMOT) dataset, available at our web-
site5. The SMOT dataset consists of seven videos; five were
downloaded from YouTube while the remaining ones are
from [1] and [4]. All the videos were hand labeled using
the video labeling tool from [12].

5Most datasets used in the literature to test multi-target tracking al-
gorithms portray pedestrians and or vehicles that are easily discriminated
based on appearance and hence are not well suited to evaluate the proposed
tracking approach.
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Sink/Source Free Tracklet Association
Generalized Linear Assignment (GLA) removes sink/source requirement

A Hankel Matrix

ambiguous)points))


