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II. PROJECT DESCRIPTION

A. Overview and Signiϔicance 

In CT-based security screening, a challenging problem is to correctly identify and label objects in a scene from 
X-ray projection data. Conventionally, material parameter reconstruction and labelling are performed as two 
decoupled steps. Image artifacts induced from metal and other clutter cause variations in apparent material 
density as well as streaking that can break up homogeneous objects, making their correct identiϐication and 
assessment challenging. In this project, methods are developed that incorporate the tools of machine learn-
ing, physical modeling and Bayesian inference into a uniϐied framework for direct material identiϐication and 
labeling. Reliable material labelling is critical to the efϐicient operation of the checkpoint, which is made ex-
tremely challenging due to the large range of objects that can appear in baggage, the presence of high clutter, 
and metal induced image artifacts. The new approach that has been developed can mitigate image artifacts 
and robustly label materials, thus reducing the number of corner cases, which can in turn reduce false alarms 
and the need for On-Screen Alarm Resolution Protocol (OSARP) and manual inspection.

B. State-of-the-Art and Technical Approach

A challenging problem in CT-based screening is ϐinding and labeling objects of interest in the scene [1-5]. Tra-
ditional approaches perform decoupled steps in obtaining material labels. The ϐirst step performs image pro-
cessing, such as ϐiltering and denoising, in an attempt to reduce noise and image artifacts. These processed 
images are then labeled or segmented in an attempt to ϐind objects and determine their underlying materials 
cut [12, 13]. We have developed a new direct, dictionary-based method for material labeling from Multi-En-
ergy Computed Tomography (MECT) measurements. This new method takes into account the system model 
information together with a dictionary-based model of the measured sinograms. The linear attenuation coef-
ϐicients (LACs) of the materials of interest are used as dictionary elements. The typically decoupled approach 
and the new proposed joint approach are illustrated in Figure 1.

Figure 1:   Object segmentation and labeling: decoupled (typical) versus joint (proposed) paths.
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The observed normalized log-sinogram data in MECT sensing follows the non-linear Beer-Lambert law of 
X-ray imaging [8-10]:

where Is (  )  is the measurement along ray-path     for spectral weighting s, ws(E) is the spectral weighting 
function S used in the measurement, and μ(x, E)is the LAC of the material at spatial location X and energy E, 
which identiϐies the material present at that location. Examples of LAC curves and spectral weighting func-
tions are shown in Figure 2.

The characteristics of the material at spatial location X are captured through the energy dependent function 
μ(x, E). Typically, this function is approximated as a linear combination of only two basis functions [11], such 
as the photoelectric and Compton basis functions. In the security application, however, we are less concerned 
with accurate representation of the function than with accurate identiϐication of the material at that spatial 
location. In this work we focus on this identiϐication aspect.
Initially, we developed a ϐirst principle physics-based approach starting from the MECT projection data for 
the estimation of the material label image. The approach takes into account the tomographic system model 
through the Beer-Lambert law. The novel component is that a dictionary-based model of the materials of in-
terest in the scene is used, with the LACs of materials of interest used as the dictionary elements. Dictionary 
coefϐicients are estimated using a sparsity constraint and then used to identify material labels that match the 
observed multi-energy observations. A Markov random ϐield (MRF) type model, which captures our belief 
that the label ϐield should display spatial coherence, is used to suppress artifacts. This spatial coherence re-
ϐlects the behavior of objects in the scene and serves to further our goal of preventing the splitting of objects.
Speciϐically, we create a dictionary of LACs of the few materials of interest:

where μk  is a vector representing the LAC of material label k as a function of (discretized) energy level. This 
dictionary provides an overcomplete basis for representing the material LAC in the scene. Let cx  be the LAC 

 

Figure 2:   Left: the linear attenuation coeffi  cient (LAC) curves of a few example materials. Right: examples of spectral 

weighting functions w
s
(E) used in X-ray based sensing (normalized to unit sum).
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composition vector for the pixel at location x in the scene. The LAC of the material at pixel location x is then 
given by the linear combination of dictionary elements speciϐied by the product Dcx. Since we believe there 
is only a single material at pixel x, we assume sparsity of the vectors cx such that only a single entry of cx will 
be 1 and the rest 0. We ϐind the material labels by solving a uniϐied optimization problem with this dictio-
nary-based scene model under the previous Beer-Lambert X-ray observations. The overall formulation is:

The ϐirst summation in the formula above is a data ϐidelity term. It is deϐined as the squared error between 
the measured sinogram and the dictionary-based model based on the physical Beer-Lambert law. The second 
term is a Potts-type MRF prior term. This term penalizes any differences in dictionary coefϐicient vectors for 
pixels in a small neighborhood. Different coefϐicient vectors correspond to different labels and the desire is to 
increase the coherency of the label ϐield. The minimization is performed subject to the constraints that only 
a single entry of any coefϐicient vector cx  at spatial location x is equal to 1. These constraints reϐlect the belief 
that there is only one material at each spatial location, and that this material is associated to a particular 
column of the material dictionary D. A solution is obtained by an iterative process that solves for each cx  in 
sequence while keeping the others ϐixed. All the material possibilities are tested and the one that provides 
the lowest value of the cost function is selected. Note that this new approach is performing direct, integrated 
segmentation and labeling in contrast to conventional ad-hoc multi-step processes. We call this method the 
“dictionary labeling” method.
While the above dictionary labeling method exploits the complete physical sensing model as well as knowl-
edge of material X-ray behavior and scene construction through a dictionary, it requires detailed knowledge 
of system parameters, such as sensing geometry, spectral shapes, material LACs, etc., and can be compu-
tationally demanding because repeated tomographic mappings are required in its solution. As a result, a 
more recent thrust of our research in this project has focused on the development of efϐicient data-driven 
approaches using machine learning and graph-cut methods [14]. In this second approach, we start from 
conventionally formed effective attenuation images for each multi-energy experiment, which are natively 
available, and then directly learn the conditional appearance model for each material of interest from a set 
of such training data. As a result, explicit physical models of the complete tomographic system and detailed 
information on material LACs are not needed. Given this learned multi-energy appearance model, a discrete 
label-based optimization is performed for material type. The optimization functional includes prior knowl-
edge of the nature of typical security image artifacts, allowing for their suppression.
To develop the method, let       and         denote the conventionally created effective attenuation images for a 
high energy and low energy X-ray CT scan, respectively. Extension to more than two energies is straight for-
ward. At any spatial location x, the appearance of a material in these two scans is modeled as a probability 
density

conditioned on the label lx of the material at that location. This density captures the potential variability in 
material appearance and is directly found using machine learning kernel density estimation techniques from 
training data. In this way, the method directly captures appearance uncertainty and does not require detailed 
or explicit physical material or scanner knowledge.

H L
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Unfortunately, conventionally created effective attenuation images may contain streaks [7], which cause the 
splitting of objects and shading, resulting in the corruption of attenuation values. The probabilistic appear-
ance model can capture and model a portion of this variability, providing some mitigation, but direct incorpo-
ration of additional prior information can improve the ϐinal result. For example, a large source of artifacts in 
luggage scans is the presence of metal objects. Further, such metal artifacts are often stronger the closer the 
pixels are to the metal object. To reϐlect this insight, observed data near metal objects is assumed less reliable 
and, therefore, down weighted.  In addition, to prevent object splitting and reduce attenuation variability in 
homogeneous regions, an object boundary ϐield is used.
Overall, material labels at each pixel location and segmentation of objects is obtained jointly as the solution 
of the following optimization problem:

In this framework        and        are the conventionally formed effective attenuation images obtained from mea-
surements with two different (high and low) spectral weightings, lx  is the material label at pixel x,

is the learned appearance model for material label lx  at pixel x, vj are data weights which down-weight data 
points in the vicinity of metal, λ is a non-negative regularization parameter and gMRF = (l1, l2, ... lN, s) is an MRF 
smoothing term, which is based on an estimate of the image boundary ϐield S. This MRF model captures local 
coherence of material labels and takes into account an estimate of object boundaries to further ensure label 
homogeneity within an object. Figure 3 on the next page shows the main components of the method for an 
example slice from the Imatron scans database. The resulting optimization problem is a non-convex, dis-
crete label problem, which are, in general, challenging to solve. To accomplish this optimization, an efϐicient 
graph-cut based method has been developed. Such graph-cut methods have been popular in the computer 
vision land discrete optimization literature, but have not been used in this domain. These methods map the 
original optimization problem to an equivalent graph ϐlow problem and a minimal cut of this graph provides 
the optimal solution. These methods have shown great success in producing efϐicient near optimal solutions 
for very challenging discrete problems, and are well suited to our application. We call this overall method 
“learning-based object identiϐication and segmentation” or LOIS.
In contrast to existing methods, LOIS incorporates machine learning methods for appearance model gener-
ation, obviating the need for complex tomographic models. LOIS includes prior knowledge of security-based 
artifact behavior, reducing splitting and shading and, thus, reducing false labelling. LOIS also directly gener-
ates material labels through an inherently discrete, label-based solution built on efϐicient graph-cut methods.

H L
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Figure 3:   Illustration of the main components of the learning-based graph-cut labeling method. The left column gen-

erates the learned appearance models, which account for variability and materials of interest. The middle column gen-

erates an object boundary fi eld, used in the smoothing term. The right column generates a map of metal and corre-

sponding metal-sensitive data weights. Data points close to metal are given lower weights.  All three components are 

used in the overall graph-cut based optimization at the bottom. 
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C. Major Contributions

We have developed and tested our new methods for robust material identiϐication from multi-energy X-ray 
sensed data. Using LOIS, we have developed a robust and efϐicient learning-based method for direct material 
labeling from multi-energy data sets. This method exploits the physics of multi-energy imaging and the pow-
er of machine learning. An integrated framework incorporating prior knowledge of artifact behavior reduces 
false alarms. Direct labeling is accomplished through a graph-cut based optimization approach. 
 We tested our methods by creating direct labeling of material from dual-energy CT data. We implemented 
the methods described above and tested them on real dual-energy data from the Imatron scans database 
obtained under ALERT Task Order 3 (TO3). These are dual-energy scans of different objects in bags obtained 
with 95 kVp and 130 kVp source spectra. 
For the dictionary labeling method, we constructed a dictionary with the LACs of graphite, magnesium and 
silicon, providing four possible material labels: graphite, magnesium, silicon and background (air). We ap-
plied the method to a scan slice that had graphite, magnesium and silicon rods, which were placed in foam 
inside of a plastic case. The results are shown in Figure 4. The labeling results seem to be accurate and we see 
that the MRF prior helps maintain object homogeneity.

Figure 4:  Material label images using the dictionary labeling method for a slice with graphite, magnesium and silicon 

rods placed in foam inside of a plastic container. The magnesium rod is on the left, the graphite rod is in the middle 

and silicon is on the right. The dictionary was composed of graphite, magnesium and silicon LACs. Graphite is labeled 

in light blue, magnesium is labeled in yellow, silicon is labeled in red and background is labeled in dark blue. Top: ini-

tialization. Bottom left: result with no MRF prior. Bottom right: result with an MRF prior. The method achieves accurate 

material labeling and, using the MRF prior, helps to get more homogeneous results.  
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For the LOIS learning-based graph-cut labeling method, in this period, we have extended our preliminary 2D 
slice-by-slice results to a fully 3D solution and compared it to a conventional K-nearest neighbor (KNN) clas-
siϐier trained with the same data. Training data was obtained for the following material labels: water, doped 
water, rubber and metal. Everything else was treated as an “other” category, which included background, air 
and unmodeled materials. The learning-based method automatically creates an appearance model for these 
things. Figure 5 shows a typical result from the Imatron data. On the left are cross-sections of the original 
high-energy input image. In the middle are the results obtained from a conventional KNN labeling approach.  
On the right are the results obtained with LOIS. In these images, water is dark blue, doped water is light blue, 
rubber is green, metal is orange and background is yellow. Despite the presence of metal and its associated 
streak artifacts, as well as signiϐicant clutter materials, the object materials of interest, in this case rubber 
sheet objects and doped and undoped water (blue shades), are correctly labeled without splitting or breaks. 
Overall, image quality is greatly improved.

Figure 5:  Original 130kVp image cross-sections (left column), conventional KNN labeled cross-sections (middle col-

umn) and LOIS labeled cross-sections (right column). Water is dark blue, doped water is light blue, rubber is green, 

metal is orange and background is yellow. Rubber sheets and water bottles are correctly found despite metal streaks 

and signifi cant clutter.

ALERT 
Phase 2 Year 2 Annual Report 

Appendix A: Project Reports 
Thrust R4: Video Analytics & Signature Analysis 

Project R4-B.4



Overall, these methods provide physics-based principled approaches for direct material labeling in the face 
of a large clutter class that contrasts current ad hoc, two-step decoupled approaches. The potential gain of 
such optimal methods are reduced artifacts, lower false alarms and improved material labeling.                       

D. Milestones

The project as originally envisioned has reached the following major milestones:  
1. Theoretical formulation of a novel integrated learning-based classiϐication framework for dual-en-

ergy CT with integrated artifact mitigation;
2. Initial controlled simulations to validate the concept and reϐine formulation;
3. Application to single slice dual-energy images using TO3 datasets
4. Extension of the method from 2D to a fully 3D approach; and 
5. Application of the method to multi-energy volumetric image data from TO3.

E. Future Plans

Our future plan is to merge the robust learning-based automated recognition work under R4-B.4 with the 
artifact mitigation developments under R4-C1 and focus on a new direction motivated by advanced X-ray-
based checkpoint screening. In particular, this new direction would aim to address current limitations identi-
ϐied, for example, in TSA RFI HSTS04-15-RFI-CT7999 together with the requirements for the next generation 
checkpoint. These goals include enhanced screening with lower false alarms, higher throughput and auto-
mated target identiϐication. In addition, these goals need to be met with limited scanner footprint, weight and 
cost. To accomplish this, scanners will need to create 3D images from limited numbers of views and utilize 
novel, non-rotational geometries. We propose to incorporate the lessons learned from our previous projects 
to develop new algorithms for highly-limited-view tomographic reconstruction, artifact suppression and uni-
ϐied learning-based object identiϐication based on compressed sensing and coded-aperture methods coupled 
with powerful optimization solver approaches, such as ADMM. We will exploit and adapt our previous work 
on non-conventional, limited geometry synthetic aperture radar reconstruction to these challenging security 
problems. One aspect of this work will focus on reducing the number of projection views needed for satis-
factory reconstruction quality through the use of sparsity and compressed sensing methodologies. Another 
aspect of this work will focus on development of robust material models from training data.

III. EDUCATION AND WORKFORCE DEVELOPMENT ACTIVITY

A. Course, Seminar or Workshop Development

Special session for ICIP 2015 on Computational Imaging is being developed. 
Graduate course on image formation called “Image reconstruction and restoration” was conducted with 15 
enrolled students.

B. Other outcomes that relate to educational improvement or workforce development

Ahmet Tuysuzoglu graduated with his PhD in Electrical and Computer Engineering in 2014 from Boston Uni-
versity. He is now working as a research scientist at Siemens Corporate Research.
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IV. RELEVANCE AND TRANSITION

A. Relevance of Research to the DHS Enterprise

This project is of relevance to the DHS enterprise because it is developing methods to mitigate image artifacts 
in an effort to cope with the large and unstructured class of clutter materials in baggage in multi-spectral CT 
scanning. These approaches can reduce the number of corner cases and false alarms, which in turn can re-
duce the need for OSARP and manual inspection. These concerns will grow as the use of multi-spectral X-ray 
scanning increases at the checkpoint.

B. Potential for Transition 

Interest at TSA, TSL & DHS EXD for evaluation on CT explosives data. For example, R. Krauss from TSL has 
expressed interest in evaluating the LOIS method.

C. Data and/or IP Acquisition Strategy

Data from the Imatron scanner acquired under TO3 were used for demonstration and validation.

D. Transition Pathway

The novel methods developed in this effort have been disseminated to vendors through workshops and prior 
student engagement in summer internships.  Vendors could incorporate the methods being developed in 
this project into their ATR chains. Several vendors at the symposium for the TO3 “Research and Develop-
ment of Reconstruction Advances in CT-based Object Detection Systems” effort supported by DHS Task Order 
Number HSHQDC-10-J00396, (e.g. L3) commented that they had not thought that results this good could be 
obtained directly from dual-energy data. In addition, TSL/S&T personnel (C. Love, R. Krauss, and R. Klueg) 
expressed interest in collaborating with us to see how well these methods would perform on laboratory ma-
terial samples.

E. User Connections

TSL/S&T personnel (R. Krauss) expressed renewed interest in collaborating with us to see how these meth-
ods would perform on laboratory material samples presented at the twelfth Advanced Development for Se-
curity Applications workshop (ADSA12).

V. PROJECT DOCUMENTATION

A. Peer Reviewed Journal Articles

1. A. Tuysuzoglu, W. C. Karl, I. Stojanovic, D. A. Castanon, and   S. Unlu, ``Graph-cut based Discrete-Val-
ued Image Reconstruction,’’  IEEE Trans. on Image Processing, Vol. 24, No. 5, May, 2015.

2. L. Martin, A. Tuysuzoglu, W. C. Karl, P. Ishwar, ``Learning-based object identiϐication and segmen-
tation using dual-energy CT images for security,’’ IEEE Trans. on Image Processing, Vol 24, No. 11, 
2015.
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B. New and Existing Courses Developed and Student Enrollment

New or 

Existing

Course/Module/

Degree/Cert.

Title Description Student                    

Enrollment

Existing Course Image reconstruc-

tion and restoration

Graduate course on image formation 15

C. Software Developed

1. Datasets
a. TO3 and TO4 Data resources
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